Lecture 19:
• The Max-Flow Problem

Announcements
• HW-4 due, Project Step 2 due
• PS-5 out, due Tues 11/8
• HW-5 out (soon)

Max-Flow Intro

The “Lucky Puck” Company Flow Network (Cormen et al)

• Vancouver factory (source) truck routes to Winnipeg warehouse (target)
• Company ships puck crates through intermediate cities each day
• Crates can not be stored at the intermediate cities
• Edge labels are max crates per day that can be shipped between cities

The Max-Flow Problem: What is the maximum flow for the network?
Max-Flow Intro

Other Examples
• liquids flowing through pipes
• parts flowing through assembly lines
• current flowing through electrical networks
• information flowing through communication networks

“Flow Conservation” property
• rate material enters a vertex must equal rate it leaves the vertex

\[v_1 \quad f_1 \quad v_2 \quad f_2 \quad v_3 \]

• \(f_1 \) and \(f_2 \) are capacity constraints ... \(v_2 \) cannot “store” material
• if \(f_1 > f_2 \), then \(v_1 \) can only send \(f_2 \) rate to \(v_2 \)
• if \(f_1 < f_2 \), then \(v_2 \) can only send \(f_1 \) rate to \(v_3 \)

A flow network \(G = (V, E) \) is a directed graph such that:
• each edge \((u, v) \in E\) has a capacity \(c(u, v) \geq 0 \) ... nonnegative
• \(G \) has distinguished vertices \(s \) and \(t \) ... source and target
• \(f : V \times V \rightarrow \mathbb{R} \) represents a “flow” ... with constraints

A flow function \(f \) for \(G \) must satisfy:

Capacity constraint: For \(u, v \in V \), requires \(0 \leq f(u, v) \leq c(u, v) \)

Flow conservation: For \(u \in V - \{s, t\} \), requires \(\sum_{v \in V} f(v, u) = \sum_{w \in V} f(u, w) \)

Additional constraints on flow networks:
• assume each vertex lies on a path from \(s \) to \(t \)
• if \((u, v) \in E\) then no edge \((v, u)\) in opposite direction ... can add node
• if \((u, v) \not\in E\) then \(c(u, v) = 0 \)
• \(G \) does not have any self-edges
Max-Flow Intro

The value $|f|$ of a flow f is:

$$|f| = \sum_{v \in V} f(s, v) - \sum_{v \in V} f(v, s)$$

- note: networks typically don’t have edges into s ... so $\sum f(v, s) = 0$
- if no edges into s, the value of a flow is what flows out of s

Thus, the Max-Flow problem (more formally) is:

Given G, s, t, and c, find the flow f with the largest possible value $|f|$

Ford-Fulkerson Method

The Basic Idea:

1. initialize flow f to 0
2. while an augmenting path p exists in the residual network G_f
3. augment flow f along the path p
4. return f

To develop a concrete algorithm, need to define:

- residual networks
- augmenting paths
Residual Networks

An edge’s “**residual capacity**” $c_f = c(u, v) - f(u, v)$ (capacity minus flow)
- if positive, edge’s flow can be increased
- if zero, edge is at max capacity
- if negative, edge is over capacity (violates network constraints)

A **residual network** G_f captures how edge flow can be changed in G

(i) G_f contains edges of G with a positive residual capacity c_f
(ii) G_f can contain edges not in G that represent a decrease in positive flow
 - i.e., for $f(u, v)$, place edge (v, u) in G_f with $c_f(v, u) = f(u, v)$
 - where decreasing flow on edges could help to increase the total flow
 - we are “sending back” flow that has already been sent along an edge