Lecture 16:
• Transitive (edge) closure
• Transitive (edge) reduction

Announcements
• HW-3 due
• PS-5 out, due Tues 11/1
• HW-4 out, due Thur 11/3

Transitive Edge Closure

Basic Idea:
• Pre-compute “paths” (by adding edges) to speed-up reachability questions
• Becomes easy to determine if there is a path from \(u \) to \(v \)

An example of a trade-off of space (“path” edges) for time
Transitive Edge Closure (cont)

Definition:
- Let $G = (V, E)$ be a directed graph
- G’s transitive closure is $G^+ = (V, E^+)$ such that:
 $$E^+ = \{(u, v) \mid \text{there is a path from } u \text{ to } v \text{ in } G\}$$

Check In: How can we compute closure using DFS? ... “naive” approach
- Copy vertices from G into G^+
- For each vertex u in G
 - Find all vertices v connected to u using DFS (over G)
 - Add each edge (u, v) to E^+

Check In: What is the cost?
- $O(V(V + E))$ since we compute DFS for each vertex $v \in V$

If G is a DAG, can modify topological sort to compute the closure:
- When “dead end” y reached from x, add y’s out-nodes to x’s in E^+
- Cost is $O(V + E)$ for topological sort plus $O(V^2)$ to add all the edges

IF G has cycles, can leverage (strongly) connected components:
- Compute the meta-graph of G … $O(V + E)$
- Compute the closure of the meta-graph … C components
- Apply the resulting meta-graph closure to G … (*)

Where C is ideally much smaller than V (and similarly for meta-graph edges)

(*) Notes:
- Add edges between all nodes in each strongly connected component
- If edge (C_1, C_2) in meta-graph, add all edges (x, y) for $x \in C_1$ and $y \in C_2$
Transitive (Edge) Reduction

Goal: Reduce number of edges while maintaining reachability
- if v reachable from u in G, then v still reachable in reduced G
- transitive closure can decrease reachability query time (vs storage)
- transitive reduction can decrease graph storage (vs query time)

Basic Definition: Let $G = (V, E)$ be the original directed graph
- $G^- = (V, E^-)$ is a “minimal” directed graph ... no “extra” edges
- there is a path i to j in G iff a path i to j is in G^-

Note that the closure of the reduced graph G^- is the closure of the graph G
- closure(reduction(G)) \equiv closure(G)

Transitive (Edge) Reduction

Two variants:
1. only include original edges in G
2. allow edges not in G to be used

Variant (1): Only include original edges in G

G^- a subgraph of G

A Simple Approach:
- Remove edges (u, v) from G that don’t change reachability from u to v
- The minimal subgraph obtained is an irreducible kernel of G
- A subgraph with the fewest edges is a minimum equivalent graph of G

Questions:
- What is the cost?
- Does the algorithm always produce minimum equivalent subgraphs?
Transitive Reduction – Irreducible Kernel Approach

Finding irreducible kernel’s can be performed in $O(E(V + E))$ time

1. $E^- \leftarrow E$
2. for each (u, v) in E
3. use shortest path on $E^- - (u, v)$ to check v reachable from u
4. if v is still reachable from u
5. delete (u, v) from E^-

The result, however, might not be a minimum equivalent graph ...

Finding minimum equivalent graphs:
- NP-complete for connected components (thus, not practical in general)
- For DAGs, irreducible kernel finds minimum equivalent subgraphs

Transitive (Edge) Reduction

Variant (2): Relax subgraph requirement (allow edges not in E)

This variant is typically what is meant by “transitive reduction”

Note that a simple cycle contains unique vertices
- Versus a non-simple cycle
- Similar idea for simple vs non-simple paths

Basic Algorithm:
1. compute G’s strongly connected components C_1, C_2, \ldots, C_n
2. for each component C_i
3. create a simple cycle connecting each vertex in C_i
4. keep one edge per connected component pair as a “bridge”
5. compute the irreducible kernel over the meta-graph (a DAG)