Lecture 10:
• Breadth-First Search (cont)
• Shortest Paths
• Connected Components

Announcements
• HW-1 due
• Exam 1, Tues, Oct 4
• PS-3 out, due Thur, Oct 6
• HW-2 out (soon), due Tues, Oct 11

Breadth-First Search (cont)

Algorithm: BFS
Input: A graph $G = (V, E)$ and a source vertex $s \in V$.
Result: Dictionary mapping discovered vertices to their parent vertices.

1 begin
2 mark all vertices $v \in V$ as not visited
3 mark vertex s as visited
4 set parent of s to -1 (denoting the root)
5 $Q \leftarrow$ a queue data structure initialized with s
6 while Q is not empty do
7 $u \leftarrow$ the vertex at the front of Q (dequeue)
8 for v adjacent to u in E do
9 if v is not yet visited then
10 mark v as visited
11 set v’s parent to u
12 add v to the end of Q
Breadth-First Search (cont)

Analysis of BFS:

(1). initialization of array for visited nodes is $O(V)$

(2). each directed out-edge from a “frontier” node is visited once

(3). each undirected edge from a “frontier” node is visited twice

(4). thus, $O(E)$ edges visited

(5). making BFS $O(V + E)$... which is linear in the size of the graph!

Check in: is there a best case versus a worst case?
 • e.g., what happens when nothing is reachable from s?

BFS Observations

1. The layers partition the vertices reachable from s
 • thus, each reachable vertex is in exactly one layer (L1, L2, ...)

2. The layer denotes the minimum number of edges from s to layer vertices
 all vertices 1 edge from s are in Layer 1
 all vertices 2 edges from s are in Layer 2
 all vertices 3 edges from s are in Layer 3
 ...
 all vertices d edges from s are in Layer d

 • minimum since existence of shorter path would put vertex in earlier layer
BFS Observations (cont)

3. **BFS computes the shortest paths from** s
 - the **length** of a path is the number of path edges
 - the **shortest** path is the path with minimal length
 - the layer of v denotes the shortest path length from s to v
 - path length is one way to define "distance" between vertices

BFS is the "go to" algorithm for computing shortest paths ...
 - simple reachability queries
 - computing diameter of a graph (e.g., max moves needed to solve a game)
 - network routing tables
 - computing "Bacon" numbers

Connected Components

Let $G = (V, E)$ be a graph
- A **connected component** of G is the largest (maximal) subset $S \subseteq V$ with a path between each pair of vertices in S
- Alternatively: an equivalence relation where the relation is reachability

Check in: How many connected components are in the following graph?

```
0 2 4 6
1 3 5 7
```

Check in: What are min-max number of components in an undirected graph?
- 1 (all vertices) to $|V|$ (no edges)

Applications: check if graph is “disconnected” (e.g., computer network), find all components ("clusters")
Connected Components (cont)

We can find connected components in an undirected graph using BFS ...

Basic Idea:
• start with a vertex u and determine vertices reachable from u (via BFS)
• find a vertex v not reachable from u (i.e., not yet discovered)
• determine vertices reachable from v (via BFS)
• repeat until all vertices are in a connected component

Comments:
• this only works for undirected graphs (see below)
• the connected component formed by u is disjoint from the one formed by v
• Q: why? ... otherwise, v would be reachable from u!

Analysis:
• Q: What is the cost? ... $\Theta(V + E)$
• unlike BFS from a vertex, we must visit every edge

HW-2 asks you to implement this basic algorithm
• assume connected components are numbered from 0, 1, 2, ···
• maintain mapping from vertex to its connected component
• use the mapping to check if a vertex is discovered or not
• must implement as augmented BFS algo (not just calling BFS)

In a directed graph, this algorithm finds "weakly" connected components
• treats the directed edges as undirected (ignoring the direction)
• we'll discuss approaches later to find "strongly" connected components