MyPL Type Inference Rules. The goal of the following rules are to help clarify type inference

and type checking in MyPL. We make the following assumptions.

The notation e : ¢t says that expression e has type t.

The null value has type void (i.e., null : void) and literals (constants) ¢ have their
corresponding type t (i.e., ¢ : t).

In general, e denotes an expression, ¢ a data type, x a variable/field name, s a struct name,
and f a function name.

Function types are denoted as mappings from parameter type lists (in the order of function
parameters) to return types. For example, f : int, string — bool says f takes an int and
string, and returns a bool.

Struct types are represented as mappings from field names to types. For example,
s:{xy = t1,..., 2, — t,} says struct s has fields z; to x,, with types t; to t, respectively.

Array types are represented using square brackets, e.g., an int array is denoted as [int].

I" is the typing context (environment). The notation I' - e : ¢ says that the current context
implies that expression e has type t. Similarly, the notation I', stmt F e : ¢ says that the
current context extended with the statement implies e has type t. We take some liberties
below by assuming we are “in” the statement (stmt) when it extends the scope.

Unlike syntax rules, the typing rules are meant to provide a guide to some of the details as
opposed to an implementation strategy.

Typing Rules for MyPL Expressions:

I'-e;:string I'Fes:string

I'Fe + ey :string

ke :t T'key:t te{int,double} ope€ {+-,%, /}
e opeg:t

Fl—el:tl Fl_egitg (tlth V t1:V0id V tQZVOid) OPE{::,!:}
['F: ey op ey : bool

'Fe:t T'key:t te{int,double,string} op € {<,>, <=>=}
['F: ey op ey : bool

I'Fe; :bool Ik ey:bool
I' - e; and ey : bool

I'-e;:bool TI'Fey:bool
I' ey or ey : bool

I'Fe:bool
I' - not e : bool

Typing Rules for MyPL Statements:

I'ke:t V e:void

8
Nvarx:t=e Fax:t (8)
I'Fe:t A t+#void (9)
INvarxz =e Fax:t
10
Ivarx :t Fao:t (10)
'x:t

11
I''v=e Fe:t V e:void (11)
12
I', whilee {...} ke :bool (12)
Fl—elzint VAN eQ:int (13)

I', for x frome; toey {...} Fx:int
14
I'Nife{...} Fe:bool (14)
15
I'Vif {...} elseife{...} Fe:bool (15)

Typing Rules for MyPL Structs:
(16)
[, struct s {z1:ty, ... ;2 ty } Fs:i{xy =t ... 2, =t}

'ke:s T'kFs:{...,x,—t, ...}
17
Fl—e.xi:ti ()
F'ks:{zy—>ty,....,0p—>t,} The:ty Ve :void --- T'ke,:t, V e,:void (18)

'k new s(ey,...,e,) s

Typing Rules for MyPL Functions:

19
Ot flepity, oo, it)L .0 Y Ffity, oty —t (19)
Fl_fitl,...,tn—)t Fl_elitl\/@lZVOid Fl—en:tn\/en:void (20)

CF fler,...,en): t
I'F return : t i (21)

I', returne Fe:t V e:void
Additional Typing Rules for MyPL Arrays:

'Fe:int ¢ ¢ {void,[t']} (22)

I'F newt[e] : [t]
'+ €1 . [t] '+ €g . int (23)

I'keiley] :t

fwhere “return” is a special variable assumed in each function context with the corresponding return type

