
Lecture 6: Additional Notes & Study Guide CPSC 326, Spring 2025

To-Do

Lecture 6 introduced context free grammars. Before the next lecture, do the following.

1. Continue Working on HW-1. You should be working on HW-1, which is due in
one week. Please be sure to keep up to date with piazza and post questions that you
have.

2. See additional information below. Regular and context-free grammars are de-
scribed further below. In addition, a grammar is provided for specifying MyPL literals
is given.

3. Do the practice questions below. You will need to understand how to create formal
grammars, give derivations, and define the langauge of a grammar. Do the practice
questions below before the next lecture.

Additional Information

Regular Grammars. A regular grammar does not involve recursive grammar rules. Con-
catenation, alternation, the empty string, and the star operator are each allowed.

Context-Free Grammars. Unlike a regular grammar, a context free grammar allows the
use of recursion. Every regular grammar is also context free (i.e., the set of regular languages
is a subset of the set of context free languages). The example of a language that is context-
free but not regular is {aibi | i ≥ 0}, i.e., the set of strings with a’s followed by the same
number of b’s. A context-free grammar for this language is:

S → a S b | ε

It is not possible to simulate the recursion in this case using the star operator.

MyPL Literal Values. We can use a regular grammar to define the allowable literal values
in MyPL. The rules are given in Fig. 1 using “BNF” notation, which differs from the notation
used in class as follows.

• ::= replaces →

• non-terminals are written in <>’s

• terminals are in single quotes

Below non-terminals that are in all uppercase represent token types, and non-terminals that
are in all lowercase are used solely for specifying the grammar (they do not represent token
types). The <character> non-terminal represents any character.

CPSC 326 (Spring 2025) S. Bowers 1 of 3

<BOOL_VAL> ::= ‘true’ | ‘false’
<INT_VAL> ::= <pdigit> <digit>∗ | ‘0’

<DOUBLE_VAL> ::= (<pdigit> <digit>∗ | ‘0’) ‘.’ <digit> <digit>∗

<STRING_VAL> ::= ‘"’ <character>∗ ‘"’
<ID> ::= <letter> (<letter> | <digit> | ‘_’)∗

<letter> ::= ‘a’ | ... | ‘z’ | ‘A’ | ... | ‘Z’
<pdigit> ::= ‘1’ | ... | ‘9’
<digit> ::= ’0’ | <pdigit>

Figure 1: Formal grammar specifying literal values in MyPL.

Practice Questions

Design a grammar for each of the following languages. An answer key is given on the
following page. Note that there are many different grammars for a given language. Your
grammars should exactly capture the language, i.e., contain all well-formed strings and no
strings that are not in the language.

1. The set of “balanced” curly braces (with alphabet symbols { and }). Examples of
strings in the language are "{}", "{{}}", "{}{}", "{{}{}}{}", and so on.

2. The sequences of a’s and b’s that consist of an odd number of a’s followed by the same
number of b’s.

3. The sequences of a’s followed by b’s that contain twice as many a’s as b’s. Note there
must be at least one b.

4. All sequences of a’s followed by b’s that contain strictly more a’s than b’s. Note there
can be zero b’s, but there must be at least one a.

5. All sequences of a’s and b’s that contain the same number of a’s and b’s in any order.
Examples include "", "ab", "abab", "aabb", "baab", "aabaabbb", and so on.

6. The set of strings for performing zero or more sequences of p addition operations over
0 and 1. Examples include "0", "1" , "1 + 1", "1 + 0 + 1", "0 + 0 + 1 + 0", and
so on.

7. The set of boolean expressions over true and false. Assume and (conjuction) is
represented as ∧, or (disjunction) as ∨, and not (negation) as ¬. Your grammar
should allow expressions to be grouped using square brackets [and]. Examples:

"true"

"true ∧ false"
"[false ∨ true] ∧ ¬ false"
"¬[[false ∨ true] ∧ ¬[true ∧ false]]"
and so on

CPSC 326 (Spring 2025) S. Bowers 2 of 3

Answer Key

1. S → { } | {S } | S S

2. S → a b | a aS b b

3. S → a a b | a aS b

4. S → a | aS | aS b

5. S → aS b | bS a | a bS | b aS | ε

6. S → 0 | 1 | S+S

7. S → true | false | S ∧ S | S ∨ S | [S] | ¬S

CPSC 326 (Spring 2025) S. Bowers 3 of 3

