Lecture 3: Additional Notes € Study Guide CPSC 326, Spring 2025

Overview

Lecture 3 provided a general overview of the main steps (or phases) of a compiler and
an interpreter. We also went over the three different types of interpreters, and the basic
difference among compilers, interpreters, and transpilers. Before the next lecture, do the
following. Note that we will go over in more detail what many of the steps/phases do in
class over the semester.

1. Finish HW-0. Ensure your programming environment is set up and working (Java
and Maven), obtain the HW-0 starter code, and work on HW-0. Note that the goal of
HW-0 is for you to be ready to start on HW-1 as soon as it is posted (on Friday).

2. Know the MyPL Syntax from Lecture 2. Carrying over from Lecture 2, ensure
you know the MyPL syntax and constructs. You will be tested on it!

3. Learn the phases. Be sure you can recreate the compilation and interpretation
phases discussed in class. You should be able to recreate the diagram from class
including what is passed between each step/phase.

4. Understand the ideas and tools below. More information than what was covered
in the lecture are presented below.

5. Research language implementations. For each of the following languages, deter-
mine whether their standard implementations are compilation or interpretation based:
JavaScript (V8), Python, Java, Kotlin, Swift, Go, Lua, R, C#, Haskell, OCaml, GNU
C++, CLang C++, and Rust. Note that some language implementations support
both interpretation and compilation (and even transpilers).

Additional Concepts and Terms‘

Write Once, Run Anywhere. In traditional compilation, the last step of machine-code
generation is tightly coupled to the hardware (CPU) and the operating system. For ex-
ample, g++ and similar C/C++ compilers output executables that can only be run on the
specific OS and hardware that the program is compiled on. This means that the program
must be recompiled for each hardware/OS combination (Windows vs Linux vs Mac, Arm vs
Intel, etc.). Often, to get programs to run correctly across different environments, small (or
sometimes large) modifications must also be made to the program. This is often the case
for larger-scale systems (e.g., web servers, databases, etc.). Alternatively, a selling point
for many VM-based languages is that they do not require “recompilation” to be run on
different machines. For example, running a program in Java involves two steps. The first
step “compiles” a program to Java’s bytecode format (via javac). The bytecode format,
which is machine/OS independent, is then run using the JVM (via java). By implementing
the JVM on many different hardware/OS combinations, it is possible to take the bytecode
generated on one environment (hardware/OS combo) and then run it in a completely dif-

CPSC 326 (Spring 2025) S. Bowers 1of 2



ferent environment. This ability is often referred to as write once, run anywhere. It was a
major selling point for Java, and continues to be an advantage (especially as its optimization
approaches have advanced and matured). Another popular approach is to use LLVM for
back-end compilation (see below), in part, for similar reasons. Just-in-Time (JIT) compi-
lation, as discussed in class, shares these same “write once, run anywhere” capabilities, and
today, are largely used in place of a pure VM-based approach.

The LLVM compiler infrastructure. LLVM is a set of “tools” (libraries) that can be
used as part of back-end programming language implementation. The LLVM infrastructure
primarily consists of an intermediate representation (IR), various optimizers, target (ma-
chine) code generators (for many CPUs), and a debugger. Languages that leverage LLVM
as part of their implementation (see above) typically write all of the front-end steps and
then implement a specific intermediate code generation step that then generates LLVM IR
(from which various LLVM tools/libraries can be used). Thus, the backend steps of the
language implementation are handled (and controlled) via LLVM libraries. CLang is a ma-
ture C/C++ implementation that uses LLVM (as opposed to the GNU compiler collection).
More information about LLVM can be found here: https://llvin.org/. One of the features
of LLVM is that once a program is represented in the IR, it is possible (via LLVM library
calls) to perform JIT compilation. Because of the support provided by LLVM for its IR,
LLVM also has become popular as an approach for supporting “write once, run anywhere”
features.

CPSC 326 (Spring 2025) S. Bowers 2 of 2


https://llvm.org/

