
Lecture 8:

• Quiz 2

• LL(k) Grammars and Parsing

Announcements:

• HW-1 due

• HW-2 out (will cover basics Wed.)

© S. Bowers CPSC 326, Spring 2025 1

LL(k) Parsing

We will implement an LL(k) parser

• read from left-to-right (1st L), performing a left-most derivation (2nd L)

• parses top down (parse tree built root down)

• at most k look ahead symbols (more later)

• ... some work is usually required to ensure a grammar is LL(k)!

Consider this statement rule: ... let <var> be a VAR literal

<stmt> ::= <var> '=' <expr>

Assuming the parser knows <stmt> is to be applied ...

(1) calls lexer’s nextToken() and checks that it is a VAR token

(2) calls lexer’s nextToken() and checks that it is an ASSIGN token

(3) and so on until it finishes the <stmt> rule

Produces an error if it finds a token it isn’t expecting

© S. Bowers CPSC 326, Spring 2025 2

Tips for LL(k) Grammars

Watch out for left recursion!

Example: (1) E → N (2) E → E + N ... assume N is an integer literal

To parse "5 + 4 + 3", need to determine which E rule to apply ...

Q: How far do we need to look ahead in the string to pick the rule?

• we have to go to the end of the expression ...

(1) Looking at 5, we don’t know whether to apply 1 or 2

(2) To pick 2, need to know if the string ends in "+ N"

(3) Means we have to read the entire string to know which rule to apply

If the string is longer than k, then we are stuck!

• This grammar is not LL(k) since has no fixed size k

© S. Bowers CPSC 326, Spring 2025 3

Tips for LL(k) Grammars

One solution

E → N + E | N

Q: How many look aheads needed? ... 2 (see “left factoring”)

General approach to rewriting left recursion to be in LL(k) ...

E → N E′

E′ → + N E′ | ε

Q: how far do we need to look ahead for "5 + 4 + 3" now?

• just 1 token ... this is now an LL(1) grammar

© S. Bowers CPSC 326, Spring 2025 4

Tips for LL(k) Grammars

A grammar can also have indirect left recursion

S → T a | a
T → S b | b

• allows derivations: S ⇒ T a ⇒ S b a

• having strings of the form: a, ba, aba, baba, ababa, . . .

Example rewriting for this grammar

By replacing RHS of T in S, we get:

S → S b a | b a | a

Now we can remove the direct left recursion ...

S → a S′ | ba S′

S′ → ba S′ | ε

© S. Bowers CPSC 326, Spring 2025 5

Tips for LL(k) Grammars

Watch out for grammars that are not left-factored! ... common prefixes

Example: E → if B then S E → if B then S else S
• both E rules have a common prefix

• this means more look-ahead tokens than needed

• here, since B and S can be any length strings, there is no fixed k!

To left-factor: Given rule S → X1 . . . Xn α S → X1 . . . Xn β

Rewrite to: S → X1 . . . Xn S′ S′ → α | β

Example: After left factoring ... now it is LL(1)!

E → if B then S E′

E′ → else S | ε

© S. Bowers CPSC 326, Spring 2025 6

Tips for LL(k) Grammars

Watch out for ambiguous grammars! ... problematic for LL(k) parsers

Example: E → ID | P P → [ID] | ID

... multiple (left-most) ways to generate an ID

E ⇒ ID
E ⇒ P ⇒ ID

These produce different parse trees!

• implying potentially different language interpretations (more later)

• also unclear how to choose between these (parsers will only do one)

© S. Bowers CPSC 326, Spring 2025 7

