Lecture 7:

- Formal Grammars (cont)

Announcements:

- HW-1 out
- Quiz 2 Friday – Lexical analysis, grammars
Using Parentheses: Can use parentheses to simplify rules

\[S \rightarrow (ab)^* \mid (ba)^* \]

Check In: What is the language of this grammar rule?

Check In: How can the above be rewritten so it doesn’t use parentheses?

\[S \rightarrow T^* \mid U^* \]
\[T \rightarrow ab \]
\[U \rightarrow ba \]

Note: alternation has lower precedence than other “operators”

- The rule: \(S \rightarrow a^* b \mid d^* e \)
- Is the same as: \(S \rightarrow (a^* b) \mid (d^* e) \)

Check In: What is the language of this grammar rule?

\[S \rightarrow (a \mid b)^* \mid (d \mid e)^* \]

The language consists of the empty string, all combinations of \(a \) and \(b \), and all combinations of \(d \) and \(e \)
Recursion

Either directly when used in same rule, or indirectly ...

Direct Example: \[S \rightarrow aSb \mid \epsilon \] ... \(S \) occurs (directly) in \(S \) rule
- \(S \) yields the strings \(a^i b^i \) for \(i \geq 0 \)
- note this is not possible to express using * (Kleene star)
- however, * can be implemented using recursion (w/ the empty string ...)

Indirect Example:
\[
\begin{align*}
S & \rightarrow T \mid \epsilon \\
T & \rightarrow aSb
\end{align*}
\]

Derivations: can help decipher language of grammars, especially with recursion
- A derivation starts with a single non-terminal (e.g., \(S \))
- Repeatedly replaces one non-terminal until only terminals remain
- Each “step” in the replacement is denoted by \(\Rightarrow \)

Example using the Indirect recursive grammar above:
\[
S \Rightarrow T \Rightarrow aSb \Rightarrow aTb \Rightarrow aaSbb \Rightarrow aabb
\]
Check In: Give a derivation of $abcd$ starting from S using grammar:

\[
\begin{align*}
S &\rightarrow aTUd \\
T &\rightarrow bT | \epsilon \\
U &\rightarrow Uc | c
\end{align*}
\]

\[
S \Rightarrow aTUd \Rightarrow abTUd \Rightarrow abUd \Rightarrow abcd
\]
MyPL Literals

We can use grammar rules to define a PL’s literal values

Note that we use BNF below ...

- where ::= used instead of →
- and non-terminals as `<name>`

```plaintext
BOOL_VAL ::= 'true' | 'false'
INT_VAL ::= <pdigit> <digit>* | '0'
DOUBLE_VAL ::= INT_VAL '. ' <digit> <digit>*
STRING_VAL ::= "" <character>* ""
ID ::= <letter>(<letter> | <digit> | '_')*
<letter> ::= 'a' | ... | 'z' | 'A' | ... | 'Z'
<pdigit> ::= '1' | ... | '9'
<digit> ::= '0' | <pdigit>
```

... where <character> is any symbol (letter, number, etc.) except ""
Terminology and Next Steps

A **regular** language is one that can be defined only using:

- concatenation, alternation, and Kleene star \(S \rightarrow a \)
- but no recursion (except for Kleene star)

A **context free** language is one that can be defined using:

- any of the constructs (including recursion)
- but cannot have terminals on the left-hand-side of rules

A **context sensitive** language allows terminals on the left-hand side of rules

- e.g., \(aA \rightarrow aB \)
 substrings \(aA \) replaced by \(abB \)
 - this rule is matched only when a string has an \(a \) before \(A \)
 - the initial \(a \) serves as context for when to apply the rule

PL syntax is defined using context-free grammars

- but typically not enough to prohibit all invalid programs
- which is a reason for semantic analysis
- we will talk later about additional issues in grammars (e.g., ambiguity)

Some example syntax rules: ... use EBNF or variants

- For Java: https://docs.oracle.com/javase/specs/jls/se7/html/jls-18.html
- For Python: https://docs.python.org/3/reference/grammar.html
- Summary of C++: https://alx71hub.github.io/hcb/
Summary – Things to Know

1. Basic rules, concatenation, alternation, kleene star

2. How to rewrite a rule to remove alternation

3. How recursion (direct, indirect) generally works with grammar rules

4. How to rewrite Kleene Star using recursion

5. Basic idea of a derivation, how to do basic derivations