
Lecture 7:

• Derivations and LL(k)

Announcements:

• HW-1 due Mon

© S. Bowers CPSC 326, Spring 2025 1

Context-Free Grammars

Derivations: Use grammar rules to generate strings!

• A derivation starts with a single non-terminal (e.g., S)

• Repeatedly replaces one non-terminal until only terminals remain

• Each “step” in the replacement is denoted by ⇒

Example step-by-step derivation of: S → T | ε T → aS b

S ⇒ T ⇒ aS b ⇒ aT b ⇒ aaS bb ⇒ aabb

In this case, S ∗⇒ aabb ... ∗⇒ means derives in zero or more steps

DEF: The language L of a grammar G (with start symbol S) is given as

L(G) = {w | S ∗⇒ w} ... i.e., all strings that can be derived from S

© S. Bowers CPSC 326, Spring 2025 2

Context-Free Grammars

Two special types of derivations:

• Left-most: replace left-most non-terminal at each step

• Right-most: replace right-most non-terminal at each step

Example: (1) S → RR (2) S → ε (3) R → aSb

A left-most derivation of "abab" ... i⇒ means i-th rule applied

S
1⇒ RR

3⇒ aS bR
2⇒ a bR

3⇒ a b aS b
2⇒ a b a b

A right-most derivation of "abab"

S
1⇒ RR

3⇒ R aS b
2⇒ R a b

3⇒ aS b a b
2⇒ a b a b

© S. Bowers CPSC 326, Spring 2025 3

Running Example

Simple list of assignment statements

<stmt_list> ::= <stmt> | <stmt> ';' <stmt_list>
<stmt> ::= <var> '=' <expr>

<var> ::= 'A' | 'B' | 'C' | . . . | 'Z'
<expr> ::= <var> | <expr> '+' <expr> | <expr> '-' <expr>

• Note: many possible grammars for this language!

Left-most derivation of "A = B":

<stmt_list> ⇒ <stmt>

⇒ <var> = <expr>

⇒ A = <expr>

⇒ A = <var>

⇒ A = B

© S. Bowers CPSC 326, Spring 2025 4

Parse Trees

Derivations can also be written as “parse trees”

• Each non-terminal is an internal tree node

• Each rhs symbol becomes a child of the lhs node

• The root of the tree is the start symbol

Parse tree of derivation of "A = B + C; B = A"

stmt_list

stmt ; stmt_list

var = expr stmt

A expr + expr var = expr

var var B var

B C A

© S. Bowers CPSC 326, Spring 2025 5

LL(k) Parsing

We will implement an LL(k) parser

• read from left-to-right (1st L), performing a left-most derivation (2nd L)

• parses top down (parse tree built root down)

• at most k look ahead symbols (more later)

• ... some work is usually required to ensure a grammar is LL(k)!

Consider this statement rule: ... let <var> be a VAR literal

<stmt> ::= <var> '=' <expr>

Assuming the parser knows <stmt> is to be applied ...

(1) calls lexer’s nextToken() and checks that it is a VAR token

(2) calls lexer’s nextToken() and checks that it is an ASSIGN token

(3) and so on until it finishes the <stmt> rule

Produces an error if it finds a token it isn’t expecting

© S. Bowers CPSC 326, Spring 2025 6

