
Lecture 6:

• Formal Grammars

Announcements:

• HW-1 out (due Mon, 2/3)

© S. Bowers CPSC 326, Spring 2025 1

More on Formal Grammars

There are many types (classes) of formal grammars ... expressive power

• The regular grammars specify regular languages (think regular expressions)

• The context free grammars specify context-free languages (most PLs)

• ... and so on

Can use grammar rules in “two directions”: ... parsing is a mix of both

• Given a string, check if it follows the rules

• Apply the rules to generate (derive) strings

Aside: Grammars closely tied to computation ... models of computation

• Applying rules to derive strings is “computing” the strings of language

• Viewing strings as algorithm outputs, the grammar “computes” the outputs

© S. Bowers CPSC 326, Spring 2025 2

Context-Free Grammars

A context-free grammar consists of:

• an alphabet of terminal symbols ... e.g., token types or characters

• a set of non-terminal symbols ... each denotes a set of strings

• production rules of the form N → X1 . . . Xn ... the grammar rules

... N a non-terminal, X1 . . . Xn terminals or non-terminals (n ≥ 0)

• a start symbol (non-terminal) ... explicit or implicit

1-Rule Example:

S → a ... S is a non-terminal, a is a terminal

• Read as: S produces the string "a"

• Thus, S is the one-element set {"a"}
• And in this case, the language of the grammar is just {"a"}

© S. Bowers CPSC 326, Spring 2025 3

Context-Free Grammars

Concatenation:

S → a b

• S produces the string "a" followed by "b" (i.e., "ab")

• The language is {"ab"}

Note: Many ways to define the same language using grammars:

S → UV

U → a

V → b

• S assumed to be the start symbol as the LHS of the first rule

© S. Bowers CPSC 326, Spring 2025 4

Context-Free Grammars

Alternation:

S → a

S → b

• S can produce the string "a" or the string "b"

• The language is {"a", "b"}

Often use the special symbol | as shorthand:

S → a | b

()’s can be used for grouping ... part of grammar rule, not language

S → a | (b | c) ... {"ab", "ac"}

• equivalent to: S → a | T and T → b | c

© S. Bowers CPSC 326, Spring 2025 5

Context-Free Grammars

The empty string:

S →

• S produces the empty string ""

• The language is {""}

Often use ε as shorthand for empty string:

S → a | ε

• S produces the language {"", "a"}

© S. Bowers CPSC 326, Spring 2025 6

Context-Free Grammars

The star operator: ... aka Kleene star

S → a∗

• S produces strings with zero or more a’s ... {"", "a", "aa", . . . }

Q: What is the language of this grammar?

S → a∗ b∗

• strings with any number of a’s followed by any number of b’s

• sometimes written as: {aibj | i, j ≥ 0} ... set-builder notation

Q: What about this one?

S → (a | b) ∗ ... ()’s part of grammar rule, not the language

• strings with any combination of a’s and b’s in any order

© S. Bowers CPSC 326, Spring 2025 7

Context-Free Grammars

Note: alternation has lower precedence than other “operators”

• The rule: S → a b∗c | d∗e
• Is the same as: S → (a b∗c) | (d∗e)

Note: star has higher precedence:

• The rule: S → a b∗c

• Is the same as: S → a (b)∗c

Q: What is the language of this grammar rule?

S → (a | b)∗ | (d | e)∗

• empty string, all combos of a and b, and all combos of d and e

© S. Bowers CPSC 326, Spring 2025 8

Context-Free Grammars

Recursion: non-terminal either directly used in same rule, or indirectly ...

Direct Example:

S → aS b | ε ... S occurs (directly) in S rule

• the language of S is {ai bi | i ≥ 0}
• note this is not possible to express using just a star (∗)

• but star (∗) can be implemented using recursion ... S → aS | ε

Indirect Example:

S → T | ε
T → aS b

© S. Bowers CPSC 326, Spring 2025 9

