Today

• Intro to parsing

This Week

• EX-3 available
• HW-2 due
• HW-3 out
• Quiz-2 Thursday (lexer, grammars, derivations)
Parsing: An example grammar

Simple list of assignment statements

\[
\begin{align*}
<\text{stmt_list}> & ::= <\text{stmt}> \mid <\text{stmt}> ';' <\text{stmt_list}> \\
<\text{stmt}> & ::= <\text{var}> '=' <\text{expr}> \\
<\text{var}> & ::= 'A' \mid 'B' \mid 'C' \\
<\text{expr}> & ::= <\text{var}> \mid <\text{var}> '+' <\text{var}> \mid <\text{var}> '-' <\text{var}>
\end{align*}
\]

Note: many possible grammars for this language!

We can use grammars to generate strings (derivations)

1. choose a rule (e.g., with start symbol on left-hand side)
2. replace with right-hand side (of rule)
3. pick a non-terminal \(N \) and rule with \(N \) on left side
4. replace \(N \) with rule’s right-hand side
5. repeat from 3 until only terminals remain

Whereas \(\rightarrow \) (or \(::= \)) denotes a rule, \(\Rightarrow \) denotes a derivation
Example derivation of “A = B + C; B = A”

\[
\begin{align*}
&\langle \text{stmt_list} \rangle \Rightarrow \langle \text{stmt} \rangle ; \langle \text{stmt_list} \rangle \\
&\quad \Rightarrow \langle \text{var} \rangle = \text{expr} ; \langle \text{stmt_list} \rangle \\
&\quad \Rightarrow A = \text{expr} ; \langle \text{stmt_list} \rangle \\
&\quad \Rightarrow A = \langle \text{var} \rangle + \langle \text{var} \rangle ; \langle \text{stmt} \rangle \\
&\quad \Rightarrow A = B + \langle \text{var} \rangle ; \langle \text{stmt_list} \rangle \\
&\quad \Rightarrow A = B + C ; \langle \text{stmt_list} \rangle \\
&\quad \Rightarrow A = B + C ; \langle \text{stmt} \rangle \\
&\quad \Rightarrow A = B + C ; \langle \text{stmt} \rangle ; \langle \text{var} \rangle = \text{expr} \\
&\quad \Rightarrow A = B + C ; \langle \text{stmt} \rangle ; \langle \text{var} \rangle = \langle \text{expr} \rangle \\
&\quad \Rightarrow A = B + C ; \langle \text{stmt} \rangle ; \langle \text{var} \rangle = \langle \text{var} \rangle \\
&\quad \Rightarrow A = B + C ; \langle \text{stmt} \rangle ; \langle \text{var} \rangle = B \\
&\quad \Rightarrow A = B + C ; \langle \text{stmt} \rangle ; \langle \text{var} \rangle = B \\
&\quad \Rightarrow ... \\
\end{align*}
\]

- This is a “left-most” derivation
 - derived the string by replacing left-most non-terminals

- The opposite is a “right-most” derivation
Derivations can also be written as “parse trees”

- Using the previous example derivation of “A = B + C; B = A”

Two real-world PL grammar examples:

- Python3 grammar: docs.python.org/3/reference/grammar.html
- Java 15 grammar: docs.oracle.com/javase/specs/jls/se15/html/index.html
Parsing

- A context free grammar (derivation) is a "generator"
- Whereas a parser is a "recognizer"
 - given a token stream
 - determine if the stream is a derivation of the grammar
- A parser also (typically) builds an Abstract Syntax Tree (AST)

We’ll look at $LL(k)$ parsers

- read from left-to-right, performing a left-most derivation
- parses top down (parse tree from the root down)
- at most k look ahead symbols (more later)

Consider these (modified) rules:

\[<\text{stmt}> ::= 'A' '=' <\text{expr}>\]
\[<\text{stmt}> ::= 'B' '=' <\text{expr}>\]
\[<\text{stmt}> ::= 'C' '=' <\text{expr}>\]

Assuming the parser knows $<\text{stmt}>$ is to be applied ...

1. calls lexer’s `nextToken`
2. checks if it is a literal "A", "B", or "C", picking the corresponding rule
3. calls lexer’s `next_token`
4. checks that it is an `ASSIGN` token
5. and so on until it finishes the $<\text{stmt}>$ rule

- parser produces an error if it finds a token it isn’t expecting
Tips for $LL(k)$

Watch out for left recursion!

R1: $e \rightarrow n$
R2: $e \rightarrow e + n$

Q: how far do we need to look ahead for "5 + 4 + 3"?

- we have to go to the end of the expression ...
- even though we’re doing a left-most derivation!

1. Looking at 5 (1 lookahead), we don’t know whether to apply R1 or R2
2. To decide R2, need to know if the string ends in "+ n"
3. This means we have to read the entire string to know which rule to apply
4. If the string is longer than our fixed size k, then we are stuck!

One solution

\[e \rightarrow n + e \mid n \]

Q: How many look aheads needed? ... 2 (see “left factoring”)

Can rewrite left recursion to be in $LL(k)$...

\[e \rightarrow n \ e' \]
\[e' \rightarrow + \ n \ e' \mid \epsilon \]

Q: now how far do we need to look ahead for "5 + 4 + 3"?
The above example involved immediate (direct) left recursion

A grammar can also have indirect left recursion

\[s \rightarrow t \ a \mid a \]
\[t \rightarrow s \ b \mid b \]

- allows derivations: \(s \Rightarrow t \ a \Rightarrow s \ b \ a \)
- having strings of the form: \(a, ba, aba, baba, ababa, \ldots \)

Example rewriting for this grammar

- By replacing RHS of \(t \) in \(s \), we get:
 \[s \rightarrow s \ b \ a \mid b \ a \mid a \]

Now we can rewrite the above

\[s \rightarrow a \ s' \mid ba \ s' \]
\[s' \rightarrow ba \ s' \mid \epsilon \]
Sometimes we need to **left factor** ...

\[e \rightarrow \text{if } b \text{ then } s \mid \text{if } b \text{ then } s \text{ else } s \]

- here the first and second choice have a common prefix
- this generally means more look-ahead tokens than needed
- in this example, unless \(b \) and \(s \) are of fixed sized, there’s no fixed \(k \):

After left factoring ...

\[e \rightarrow \text{if } b \text{ then } s \ r \]

\[r \rightarrow \text{else } s \mid \epsilon \]

- Note that this is now \(LL(1) \)
What out for *ambiguous* grammars!

\[e \rightarrow id \mid p \]

\[p \rightarrow [\text{id}] \mid \text{id} \]

- here there are multiple (left-most) ways to generate an id
 \[e \Rightarrow id \Rightarrow x \]
 \[e \Rightarrow p \Rightarrow id \rightarrow x \]

- the problem is that these produce different parse trees
- and thus, may have different language interpretations (more later)