
Lecture 5:

• Quiz 1

• Lexer (wrap up)

• Formal Grammars (intro)

Announcements:

• HW-1 out (due Mon, 2/3)

© S. Bowers CPSC 326, Spring 2025 1

MyPL Lexer: Lexer Class

Lexer implements nextToken() by reading lexeme one-character-at-a-time

public class Lexer {

private BufferedReader buffer; // handle to the input stream

private int line = 1; // current line number

private int column = 0; // current column number

// constructor

public Lexer(InputStream input) {...}

// helper to read a single input -stream character

private char read() {...}

// hepler to look ahead one character in the input stream

private char peek() {...}

// helper to check if given character end -of -line symbol

private boolean isEOL(char ch) {...}

// helper to check if given character is an end -of -file

private boolean isEOF(char ch) {...}

// helper to print an error message and exit

private void error(String msg , int line , int column) {...}

// TODO: implement next token function (see starter code & hints)

public Token nextToken () {...}

}

© S. Bowers CPSC 326, Spring 2025 2



MyPL Lexer: Lexer Class

public Token nextToken () {

// read initial character

char ch = read();

// read past whitespace

while (Character.isWhitespace(ch)) {

...

}

// check for one -character symbols

if (isEOF(ch))

return new TokenType(TokenType.EOS , "end -of -stream", line , column);

else if (ch == '.')

return new TokenType(TokenType.DOT , ".", line , column);

...

}

Some hints: ... note: can implement as large method or break up

• start with whitespace (including newlines and EOF)

• then single-character tokens, then two-character tokens

• then comments, strings, numbers (integers and doubles),

• finally reserved words & ids (letter followed by letters, numbers, _’s)

© S. Bowers CPSC 326, Spring 2025 3

MyPL Lexer: Lexer Class

Additional hints:

• use given helper functions: read(), peek(), isEOL(), isEOF(), error()

• look through unit tests, get them to pass

• check that works with example files (can use diff to check)

• Character class: isDigit(ch), isLetter(ch), isLetterOrDigit(ch)

• if you don’t find a token, must be an error

• errors also in strings (end of line before closing "), numbers (leading zeros)

© S. Bowers CPSC 326, Spring 2025 4



Parsing: Languages and Grammars

Parsers perform two jobs:

(1) ensure programs are syntactically correct

(2) generate abstract syntax trees (ASTs)

We’ll start with (1), but first we have to define the MyPL syntax!

A PL’s syntax is defined using a formal grammar:

• a set of grammar rules that defines a “language” as a set of (finite) strings

Note: In a formal grammar, a language is just a set of (allowable) strings

• e.g., the language of all 2-letter strings ({"aa", "ab", "ac", . . . })
• all binary numbers w/ same # of 0’s and 1’s ({"10", "1010", . . . })
• in our case, the strings are all the syntactically valid MyPL programs

© S. Bowers CPSC 326, Spring 2025 5

More on Formal Grammars

There are many types (classes) of formal grammars ... expressive power

• The regular grammars specify regular languages (think regular expressions)

• The context free grammars specify context-free languages (most PLs)

• ... and so on

Can use grammar rules in “two directions”: ... parsing is a mix of both

• Given a string, check if it follows the rules

• Apply the rules to generate (derive) strings

Aside: Grammars closely tied to computation ... models of computation

• Applying rules to derive strings is “computing” the strings of language

• Viewing strings as algorithm outputs, the grammar “computes” the outputs

© S. Bowers CPSC 326, Spring 2025 6


