
Lecture 38:

• Quiz 9

• More on Answer-Set Programming (ASP)

Announcements:

• HW-8 out

• Final Project

• Final Exam

© S. Bowers CPSC 326, Spring 2025 1

Answer Sets

Rules:
r :- p, q. ... r ← p ∧ q

• r is the rule head

• p, q is the rule body ... read “r if p and q”

Informally, Answer Sets ...

1. Satisfy all rules of the program ...

• if the answer includes the body it also includes the head

• if the answer doesn’t include the body, the rule is trivially satisfied

2. Do not contain contradictions (e.g., p and ¬p)

3. Are minimal ... answer set as small as can be

• the Rationality Principle: “Believe nothing you are not forced to believe”

• always forced to believe asserted facts

© S. Bowers CPSC 326, Spring 2025 2



Answer Set Examples

Q: What are the answer sets?

q :- p.

r :- p.

s :- q, r.

p.

{p, q, r, s}

Q: What are the answer sets?

q :- p.

r :- q.

t :- r, s.

p.

t.

{p, t, q, r} ... note s is not in the answer!

© S. Bowers CPSC 326, Spring 2025 3

Answer Set Examples

Q: What are the answer sets?

q :- p.

r :- q.

{} ... rationality principle! (minimal answers)

Disjunction (|)

Q: What are the answer sets?

p | q. ... asserting that p or q is true

2 answer sets: {p}, {q}
• {p, q} is not a minimal answer

• thus p | q and p ∨ q are (slightly) different

© S. Bowers CPSC 326, Spring 2025 4



Answer Set Examples

Q: What are the answer sets?

p. q. ... two (propositional) facts
r | s :- p.

r | s :- q.

2 answer sets: {p,q,r}, {p,q,s} ... why not {p,q,r,s}?

• {p,q,r,s} is not minimal

Allows us to represent “incomplete” knowledge ...

sunny | raining :- umbrella.

if we use an umbrella it is sunny or raining (but don’t know which)

© S. Bowers CPSC 326, Spring 2025 5

Answer Set Examples

Default Negation (not) ... e.g., p :- not q

• what can’t be proved I believe to be false ... negation as failure

Q: What are the answer sets?

u :- not v. ... need umbrella if can’t prove overcast
u :- r. ... need umbrella if raining
u :- s. ... need umbrella if sunny

{u} ... Why?

• {} doesn’t satisfy rules since it makes not v true

• {u} satisfies all the rules

• {s,u} and {r,u} aren’t minimal

Important: Negation-free programs have a unique answer set

• ... disjunction in the head of a rule is a form of negation!

© S. Bowers CPSC 326, Spring 2025 6



Answer Set Examples

Q: What are the answer sets? Garfield Example:

p :- not q. full :- not hungry.

q :- not p. hungry :- not full.

r :- p. happy :- full.

s :- p. asleep :- full.

{p,r,s} and {q}
• First two rules same as: p | q.

Q: What are the answer sets?

p :- not p.

r :- not q.

Unsatisfiable because of the first rule!

• {r} alone implies p, {r,p} doesn’t support p

• the first rule “poisons” the entire answer set

© S. Bowers CPSC 326, Spring 2025 7

More Terminology

Atoms and Literals:

• A proposition (e.g., p, q, r) is called an atom (for “atomic statement”)

• A literal is an atom or its negation ... a positive or negative atom

• e.g., p is an atom, and both p and ¬p are literals

In predicate logic, an atom is of the form:

p(t1, t2, . . . , tn)

• p is a predicate

• the arrity of p is n ... denoted p/n

• each ti is a term ... a constant, variable, or “function”

• a proposition is just an atom with arrity 0

Terms without variables are ground, atoms with only ground terms are ground

• only ground facts are allowed in clingo (no variables)

© S. Bowers CPSC 326, Spring 2025 8



Predicate Logic Basics

Predicate examples

1 node(a) % monadic , constant a

2 edge(a,b) % binary predicate

3 child(luke ,padme) % two constants

4 child(X,Y) % X, Y are variables

5 employee(alice ,google ,engineer) % employee /3

6 employee("Alice","Google","Engineer") % same but with strings

7 enrolled_in(bob ,ssn(bob) ,326) % ssn is a function

8 list(cons(1,cons(2,nil))) % nested functions

For ground atoms, works similarly as propositions

Q: What is the answer set:

child(a,b).

child(b,c).

grandchild(a,c) :- child(a,b), child(b,c).

{child(a,b), child(b,c), grandchild(a,c)}

© S. Bowers CPSC 326, Spring 2025 9

Predicate Logic Basics

Q: What are the answer sets:

buys(bob,honda) | buys(bob,toyota).

prefers(bob,red) | prefers(bob,silver).

prefers(bob,red) :- buys(bob,honda).

There are three “possible worlds” ...

• {buys(bob,honda), prefers(bob,red)}
• {buys(bob,toyota), prefers(bob,silver)}
• {buys(bob,toyota), prefers(bob,red)}

© S. Bowers CPSC 326, Spring 2025 10



Computing Answer Sets – Dealing with not (default negation)

Assume a program P and ground atoms A (a possible answer set)

PA is obtained from P by: ... PA is called a reduct

1. removing all rules containing not a for a ∈ A ... a is an atom

2. removing all other body occurrences not b ... since b ̸∈ A
... PA is a positive program ... it has a unique answer set!

⇒ A is an answer set of P if A is the (minimal) answer of PA

Example: Assume A = {p,t}

Original program (P) Rewritten (positive) program (PA)

q :- not p. % removed

t :- p, not r. t :- p.

p. p.

{p,t} is an answer set of P since it is an answer set of PA

© S. Bowers CPSC 326, Spring 2025 11

Computing Answer Sets – Variables

1. Can only use variables safely:

• q(X) :- . . . , not p(X), . . . only if X occurs in a positive body literal (∗)

• q(X) :- . . . only if X used (positively) in the rule body

2. Answer sets are computed over ground programs (i.e., no variables):

• Each rule with variables is replaced by its ground instantitations

• ... where each variable is replaced by a ground term in the program

Example: Original program: Ground program (with substitutions):

p(a). p(b). p(a). p(b).

q(X) :- p(X). q(a) :- p(a).

q(b) :- p(b).

⇒ Clingo has two computation phases: grounding followed by solving

© S. Bowers CPSC 326, Spring 2025 12



Integrity Constraints

A constraint is a filter on entire answer sets:

:- ℓ1, ℓ2, . . . , ℓn

An answer A satisfies the constraint if at least one ℓi ̸∈ A
• in other words, the body of the constraint must be false

• if it is true, A is not an answer set

Q: What are the answer sets:

buys(alice,honda) | buys(alice,toyota).

prefers(alice,red) | prefers(alice,silver).

:- prefers(X,silver), make(X,honda). % no silver honda's

Similar three as before (i.e., red toyota, silver toyota, or red honda)

© S. Bowers CPSC 326, Spring 2025 13

Generating Guesses via Choice Rules

Choice rules provide specialized syntax for disjunction:

n1 {p(Y) : q(X,Y)} n2 :- r(X).

• for each ground body, { } generates a set of choices

• in this case, one p(Y) choice for each ground q(X,Y)

• makes k “guesses” from the set for n1 ≤ k ≤ n2 ... also other variants

Example: ... here using = n variant

color(red). color(green). color(blue).

{node_color(X,C) : color(C)} = 1 :- node(X).

Result is an answer set for every possible assignment of a color to a node

• {node_color(1,red), has_color(2,red), ...}
• {node_color(1,red), has_color(2,green), ...}
• and so on

© S. Bowers CPSC 326, Spring 2025 14



Aggregation

clingo also supports aggregation functions

• #count, #sum, #min, and #max

The basic syntax:

v1 rel1 f { t1:L1; t2:L2; ...; tn:Ln} rel2 v2

where:

• f is one of the aggregate functions

• v1 and v2 are integer values (or variables)

• rel1 and rel2 are (optional) comparators (<, >, =, <=, >=, !=)

• ti is a term “tuple” and Li is a literal “tuple”

• aggregate function works over the set of term tuples

© S. Bowers CPSC 326, Spring 2025 15

Aggregation

Max of the set of values {3,2,1,4,5}

#max {3; 2; 1; 4; 5} evaluates to 5

The sum of the unique term “weights” {1,1,2,2} ... as a set {1, 2}
#sum {1:p; 1:q; 2:p; 2:q} evaluates to 3 if p and q are true

Sums of the T values for unique T,F pairs (from xkcd example)

:- 1505 != #sum { T,F : total_order(F,N,T) }.

Number of unique X,Y pairs (to count the unique graph edges)

edges(N) :- N = #count { X,Y : edge(X,Y) }.

Number of posts N liked by employees E of Google

N = #count { P : likes(E,P) }, works_for(E,"Google")

© S. Bowers CPSC 326, Spring 2025 16



Additional Features

Recursion: e.g., computing transitive closures ... trees & graphs (w/ cycles)

descendent(X,Y) :- child(X,Y).

descendent(X,Y) :- child(X,Z), descendent(Z,Y).

can also do: descendent(X,Y) :- descendent(X,Z), descendent(Z,Y).

Recursion through Negation ... Q: What does this program do?

diner(X) :- adjacent(X,Y), cafe(Y).

cafe(X) :- building(X), not diner(X).

Assigns campus buildings with cafes or diners such that:

1. no two adjacent buildings have a cafe

2. every building without a diner has a cafe

3. every building has one or the other (but not both)

© S. Bowers CPSC 326, Spring 2025 17

Additional Features

Minimization and Maximization: find smallest and largest answers

1 % guess edges to delete and compute a new graph

2 { del(X,Y) } :- edge(X,Y).

3 edge_1(X,Y) :- edge(X,Y), not del(X,Y).

4 % compute all original and new graph paths

5 path(X,Y) :- edge(X,Y).

6 path(X,Y) :- path(X,Z), path(Z,Y).

7 path_1(X,Y) :- edge_1(X,Y).

8 path_1(X,Y) :- path_1(X,Z), path_1(Z,Y).

9 % ensure same path relation

10 :- path(X,Y), not path_1(X,Y).

11 % count edges , keep new graphs with fewest remaining edges

12 edge_cnt(N) :- N = #count {X,Y : edge_1(X,Y)}.

13 #minimize {N : edge_cnt(N)}.

Intervals and Pooling

Intervals: size(1..3) is replaced by size(1) size(2) size(3)

Pooling: color(red ; blue) is replaced by color(red) color(blue).

... can also combine, e.g.: p(1,2 ; a,b)

© S. Bowers CPSC 326, Spring 2025 18



From Lecture 1: Course Overview

Deep dive into programming language (PL) design & implementation

• along the way, implement a “made up” typed, procedural language

• including parsing, type checking, and execution

General Course Goals:

• more programming experience

• understanding of how PLs (compilers/interpreters) work

• understanding of language design (syntax, types, constructs, trade-offs)

• (brief) exposure to different programming “paradigms”

© S. Bowers CPSC 326, Spring 2025 19

From Lecture 1: Why ...

“What I cannot create, I do not understand” – Richard Feynman

Understanding how PLs work ...

• can help make you a better programmer

• can help decrease time needed to learn new languages

• techniques useful for wide range of software dev problems

• example of a more complicated/larger engineering problem

• essential part of computer science (curriculum, PLs as a subfield)

Studying PL concepts generally ...

• new ways to think about programming and problem solving tools

• better understand language and performance trade-offs

© S. Bowers CPSC 326, Spring 2025 20


