
Lecture 34:

• OCaml: Pattern matching

Announcements:

• HW-7 due Friday

© S. Bowers CPSC 326, Spring 2025 1

OCaml Pattern Matching

Basic form of a match expression ... definition by cases

match e with

| p1 -> e1

| p2 -> e2

| ...

| pn -> en

• e is expression to match, pi are value “patterns”, ei are result expressions

• ... the first | is optional

• e matched with p1, then p2, etc., until a match is found

• first match with pi results in ei (and matching stopped)

Simple example where there are just two possible value matches:

let my_not x =

match x with

| true -> false

| false -> true

© S. Bowers CPSC 326, Spring 2025 2

OCaml Pattern Matching

Another simple example ...

let vowel x =

match x with

| 'a' -> true

| 'e' -> true

| 'i' -> true

| 'o' -> true

| 'u' -> true

| _ -> false

(* simplifying the pattern *)

let vowel x =

match x with

| 'a' | 'e' | 'i' | 'o' | 'u' -> true

| _ -> false

• the _ (underscore) matches any value (aka a “don’t care”)

© S. Bowers CPSC 326, Spring 2025 3

OCaml Pattern Matching

Patterns should be “exhaustive” ...

let vowel x =

match x with

| 'a' -> true

| 'e' -> true

| 'i' -> true

| 'o' -> true

| 'u' -> true

Warning 8 [partial-match]: this pattern-matching is not exhaustive.

Here is an example of a case that is not matched:

'b'

val vowel : char -> bool = <fun>

vowel 'b';;

Exception: Match_failure ("//toplevel//", 2, 0).

© S. Bowers CPSC 326, Spring 2025 4

OCaml Pattern Matching

Pattern Type Constraints

match e with

| p1 -> e1

| ...

| pn -> en

• Each pi must have the same type as e

• Each ei must have the same type

Pattern matching with lists ... const (::) “deconstructs”

• [] matches the empty list

• [x] matches a one-element list ... also x::[]

• [x; y] matches a two-element list, etc. ... also x::y::[]

• h::t matches a list with at least one element (head, tail)

• h1::h2::t matches a list with at least two elements, etc.

© S. Bowers CPSC 326, Spring 2025 5

OCaml Pattern Matching

Examples:

let empty xs =

match xs with

| [] -> true

| _ -> false

let rec length xs =

match xs with

| [] -> 0

| _::t -> 1 + length t

let rec shuffle xs ys =

match (xs, ys) with (* construct pair to match two values *)

| ([], ys') -> ys'

| (xs', []) -> xs'

| (x'::xs', y'::ys') -> x' :: y' :: mix xs' ys'

Q: Are the patterns for shuffle “exhaustive”? What about [] []?

© S. Bowers CPSC 326, Spring 2025 6

OCaml Pattern Matching

Note that match is just an expression ...

match [1; 2] with

| [] -> 0

| [h] -> 1

| h1::h2::[] -> 2 (* also two elem list *)

| _ -> 3 ;;

Q: What is wrong with this match expression?

match [1; 2; 3] with

| [] -> 0

| h::t -> 1

| h1::h2::t -> 2 ;;

• the third pattern will never match ... order of patterns is important!

OCaml will warn you ...

Warning 11 [redundant-case]: this match case is unused.

- : int = 1

© S. Bowers CPSC 326, Spring 2025 7

OCaml Pattern Guards

Guards allow us to define conditions for a pattern

| pi when ci -> ei

Example: Get the i-th element in a list

let rec get i xs =

if i < 0 || i >= List.length xs then failwith "Invalid Index"

else if i == 0 then List.hd xs

else get (i-1) (List.tl xs)

let rec get i xs =

match xs with

| [] -> failwith "Invalid Index"

| x::t -> if i == 0 then x else get (i-1) (tail xs)

let rec get i xs =

match xs with

| [] -> failwith "Invalid Index"

| x::_ when i == 0 -> x

| _::t -> get (i-1) t

© S. Bowers CPSC 326, Spring 2025 8

OCaml Pattern Guards

Example with multiple guards ...

let grade p =

match p with

| _ when p >= 0.9 -> "A"

| _ when p >= 0.8 -> "B"

| _ when p >= 0.7 -> "C"

| _ when p >= 0.6 -> "D"

| _ -> "F"

Can still have non-exhaustive pattern warnings (and errors):

let grade p =

match p with

| _ when p >= 0.9 -> "A"

| _ when p >= 0.8 -> "B"

| _ when p >= 0.7 -> "C"

| _ when p >= 0.6 -> "D"

;;

Warning 8 [partial-match]: this pattern-matching is not exhaustive.

All clauses in this pattern-matching are guarded.

val grade : float -> string = <fun>

© S. Bowers CPSC 326, Spring 2025 9

