Lecture 33:

® OCaml: Tuples, More functions

Announcements:
® HW-6 due
o HW-7 out

© S. Bowers CPSC 326, Spring 2025

OCaml Tuples

A “tuple”’ is a fixed size collection of values
® Each tuple value can have a different type

® Tuple values and types are denoted using parentheses ...

(1, 2) ;; (* int pair *)
- ¢ int * int = (1, 2)
('a', true) ;; (* heterogeneous pair *)
- : char * bool = ('a', true)
(1, 2., 'a') ;; (* heterogenous 3-tuple *)
- : int * float * char = (1, 2., 'a'")
® The “*" is pronounced “cross’ (think of it as “and’)

Lists and tuples can be nested ... but watch out for types!

([1; 21, ['a'; 'P'D ;3

- : int list * char list = ([1; 2], ['a'; 'b'D

[(1, 2); ("a', 'b")]

Error: This expression has type char but an expression
was expected of type int

© S. Bowers CPSC 326, Spring 2025 2

OCaml Tuples

“Pairs” (2-tuples)

® Can access elements using fst and snd functions

fst ;;

- 'a 'b > 'a = <fun>
snd ;;

-:'a*'b > 'b = <fun>
(1, "foo") ;;

- : int * string = (1, "foo")
fst (1, "foo™)

- rint =1
snd (1, "foo")
- : string = "foo"

® Note this only works with pairs (2-tuples)!

© S. Bowers CPSC 326, Spring 2025

OCaml Basics

A more general approach: “Pattern Matching” (first look)

Using fst and snd to define a function:

let pair_add_1 p = ((fst p) + 1, (snd p) + 1) ;;

val pair_add_1 : int * int -> int * int = <fun>

pair_add_1 (1,2) ;;

- :int * int = (2, 3)

Alternatively, by “matching” on the (sub) structure of pairs:

let pair_add_1 (x, yv) = (x+ 1, v + 1) ;;
val pair_add_1 : int * int -> int * int = <fun>

pair_add_1 (2, 3) ;;
- :int * int = (3, 4)

® Q: how does OCaml figure out the function types here?

© S. Bowers CPSC 326, Spring 2025

OCaml Recursive Functions

Defining Recursive Functions in OCaml

First (wrong) attempt ...

let fac n = if n <= 1 then 1 else fac (n-1) * n ;;
Error: Unbound value fac

Second (correct) attempt ... use the rec modifier (for recursive)

let rec fac n = if n <= 1 then 1 else fac (n-1) * n ;;
val fac : int -> int = <fun>

fac 10 ;;

- : int = 3628800

© S. Bowers CPSC 326, Spring 2025

OCaml Recursive Functions

Defining mutually recursive functions:
® E.g., one function f calls g, and g calls f
® We can use and to define them in the same let binding

let rec f n =
if n < 0 then g n elsen + 1
and g n =
if n >= 0 then f n elsen -1
val £ : int -> int = <fun>
val g : int -> int = <fun>
#£1;;
- :int = 2
#£ (-1 ;5
- ¢ int = -2
#91;;
- :int = 2

© S. Bowers CPSC 326, Spring 2025

OCaml Exceptions

Basic Exceptions for Error Cases

® OCaml supports exceptions and exception handling

® Generate “failure” exceptions with failwith ...

let rec fac n =
if n =0 then 1
else if n > 0 then n * fac (n-1)
else failwith "Negative Value"

fac (-1) ;;
Exception: Failure "Negative Value".

failwith ;;
- : string -> 'a = <fun>

® Note failwith returns a value of any type!

© S. Bowers CPSC 326, Spring 2025

OCaml List Functions

The classic “head” (first elem) function: . aka “car”
List.hd [4; 1; 5] ;;
- ! int = 4
List.hd [] ;;
Exception: Failure "hd".
List.hd ;;
- : 'alist -> 'a
Can define using pattern matching: . more later
let head xs =
match xs with
| [1 -> failwith "Empty list"
| x::t > x (* better w/ wildcards: x::_ *)

® Two cases for xs: either empty or x plus rest

® Using cons to “deconstruct’ the list

© S. Bowers CPSC 326, Spring 2025

... [1, x::t are the patterns

OCaml List Functions

The classic “tail”’ function: ... aka “cdr”
List.tl [4; 1; 5] ;;

- : int list = [1; 5]

List.tl [1] ;;
- @ int list = []

List.tl [] ;;
Exception: Failure "tl".

List.tl ;;
- : 'a list -> 'a list = <fun>

Can define using pattern matching:

let tail xs =
match xs with
| [1 -> failwith "Empty list"
| _::t >t

© S. Bowers CPSC 326, Spring 2025 9

OCaml List Functions

Head and tail functions useful for defining other functions

let empty xs = xs == []

(* length: 'a list -> int *)
let rec length xs =
if empty xs then 0 else 1 + length (tail xs)

(* member: 'a -> 'a list -> bool *)
let rec member x xs =
if empty xs then false
else if head xs == x then true
else member x (tail xs)

® alternatively: List.is_empty, List.length, List.mem
® all of these can be defined using pattern matching instead (more later)

® Can add type info: let rec member (x: 'a) (xs: 'a list) : bool = ...

© S. Bowers CPSC 326, Spring 2025 10

