
Lecture 32:

• Quiz 7

• OCaml: Lists, More Functions

Announcements:

• HW-6 due

• HW-7 out soon ...

© S. Bowers CPSC 326, Spring 2025 1

OCaml Lists

Lists in OCaml take the form: [e1; e2; · · · ; en]

[1; 2; 3; 4] ;;

- : int list = [1; 2; 3; 4]

• Lists can be of any length (including empty [])

• All values in a list must be of the same type (“homogeneous”)

[1; 2; false] ;;

Error: This expression has type bool but an expression was

expected of type int

[[1; 2]; [3; 4]] ;;

- : int list list = [[1; 2]; [3; 4]]

[[1.; 2.]; [3.; 4.; 5.]; []] ;;

- : float list list = [[1.; 2.]; [3.; 4.; 5.]; []]

• the last two examples are “nested lists”

• note the types are inferred by OCaml!

© S. Bowers CPSC 326, Spring 2025 2

OCaml Lists

List types ...

• a list of ints is an “int list”, written int list

• a list of lists of ints is written int list list (i.e., an “(int list) list”)

What is the type of the empty list?

[] ;;

- : 'a list = []

• a list of any type, denoted 'a

• you can think of 'a as a type variable

• sometimes written as α (e.g., an α-list)

• where greek letters are used to denote type variables

We’ll see more examples of type variables soon ...

© S. Bowers CPSC 326, Spring 2025 3

OCaml Lists

List append (@) ... “concatenation”

• Returns an entirely new list, where

• ... values in the second are appended to the values of the first

[1; 3] @ [3; 4] ;;

- : int list = [1; 3; 3; 4]

['a'; 'b'] @ [] ;;

- : char list = ['a'; 'b']

Append is a generic (polymorphic) function that works over lists of any type:

(@) ;;

- : 'a list -> 'a list -> 'a list = <fun>

• takes two lists of the same type α, returns a new α-list

• in other words (@) : α-list → α-list → α-list

© S. Bowers CPSC 326, Spring 2025 4

OCaml Lists

OCaml supports “partial function application”

(@) [1; 2] ;;

- : int list -> int list = <fun>

• Note the type is now int-list → int-list ... why?

let prepend_1 = (@) [1] ;;

val prepend_1 : int list -> int list = <fun>

prepend_1 [2; 3] ;;

- : int list = [1; 2; 3]

© S. Bowers CPSC 326, Spring 2025 5

OCaml Lists

List construction (::) ... aka “cons”

• Creates new list from a value and a list ... a list as a sequence of cons

1 :: [2; 3] ;;

- : int list = [1; 2; 3]

1 :: 2 :: 3 :: [] ;;

- : int list = [1; 2; 3]

List.cons ;; (* similar to (::) ... *)

- : 'a -> 'a list -> 'a list = <fun>

• Thus cons takes an α value and an α-list and returns a new α-list

Q: Is cons (::) right or left associative? ... Right associative!

• 1::(2::(3::[]))
• 1::2 is a type error since second operand is not a list!

© S. Bowers CPSC 326, Spring 2025 6

