
Lecture 31:

• Intro to OCaml (cont)

Announcements:

• HW-6 out, due Mon

© S. Bowers CPSC 326, Spring 2025 1

OCaml Basics

If-then-else expressions: if b then e1 else e2

• b is a boolean expression, e1 and e2 must have same types

• evaluated to either e1 or e2

if true then 0 else 1 ;;

- : int = 0

if false then 1 else if true then 2 else 3 ;;

- : int = 2

if true then 1 else 2.0 ;;

Error: This expression has type float but an expression

was expected of type int

Not a normal conditional statement ... it is an expression!

• e.g., # let s = if true then 1 else 0 ;;

• Can have if-then without else ... must be unit type (e.g., printing)

• Can use ()’s for formatting and also begin ... end

© S. Bowers CPSC 326, Spring 2025 2

OCaml Basics

Primitive Types:

• int ... a signed 63-bit integer (extra bit for garbage collection)

• float ... similar to C++’s double type

• bool ... boolean value either true or false

• char ... a single-byte character value (e.g., 'a')

• string ... an immutable character sequence

• unit ... written as () and similar to void (i.e., a type without values)

© S. Bowers CPSC 326, Spring 2025 3

OCaml Basics

Examples:

Sys.int_size ;;

- : int = 63

'a' ;;

- : char = 'a'

"foo" ;;

- : string = "foo"

() ;;

- : unit = ()

"foo" ^ "bar" ;; (* concatenation *)

- : string = "foobar"

"foo".[0] ;; (* character access *)

- : char = 'f'

"foo".[3] ;;

Exception: Invalid_argument "index out of bounds".

(float 2) +. 3.0 ;; (* explicit conversion *)

- : float = 5.

int_of_float 3.14 ;; (* explicit conversion, full name *)

- : int = 3

© S. Bowers CPSC 326, Spring 2025 4

OCaml Basics

Expressions

• an expression evaluates to a value (e.g., to a literal)

• whereas not all statements are expressions (e.g., like in C++/Java/etc.)

Identifiers

• must start with a lowercase letter or an underscore

• can contain any number of letters, numbers, underscores, or '

Naming: binding an identifier to an expression (possibly parameterized)

• which is different than defining a variable (which can change) ...

• a parameterized name is a function

© S. Bowers CPSC 326, Spring 2025 5

OCaml Basics

Let Bindings: let name = expression

let var1 = 42 ;;

val var1 : int = 42

var1;;

- : int = 42

x = 5 ;;

Error: unbound value x

let pi = 3.14159 ;;

val pi : float = 3.14159

pi;;

- : float = 3.14159

let pi' = 3.14 ;;

val pi' : float = 3.14

© S. Bowers CPSC 326, Spring 2025 6

OCaml Basics

Let-In Expressions: let name = expr1 in expr2

let var2 = 42 in var2 ;;

- : int = 42

var2 ;;

Error: Unbound value var2

let pi = 3.14 in pi /. 2.0 ;;

- : float = 1.57

let x, y = 3, 4 in x * y ;;

- : int = 12

let x = 3 and y = 4 in x * y ;;

- : int = 12

Local bindings (versus global) ... useful when defining functions (clean code)

© S. Bowers CPSC 326, Spring 2025 7

OCaml Basics

Functions: essentially just “parameterized” let bindings

let inc x = x + 1 ;;

val inc : int -> int = <fun>

inc 1 ;;

- : int = 2

inc (inc 1) ;; ... apply: # inc @@ inc 1 or pipeline: # 1 |> inc |> inc ;;

- : int = 3

inc ;;

- : int -> int = <fun>

Note the function type: inc : int -> int ... # #show inc;;

• inc takes an int and returns an int

• we say inc’s type is “int to int”

Note how we call the function:

• instead of inc(1) ... uses λ-calculus style of function application

© S. Bowers CPSC 326, Spring 2025 8

OCaml Basics

Check in: What is wrong with the following? How do we fix it?

let inc x = x + 1 ;;

val inc : int -> int = <fun>

let dec x = x - 1 ;;

val inc : int -> int = <fun>

dec inc 1 ;;

Error: This function has type int -> int

It is applied to too many arguments; maybe you forgot a `;'.

dec (inc 1) ;;

- : int = 1

inc (inc (inc 1)) ;;

- : int = 4

© S. Bowers CPSC 326, Spring 2025 9

OCaml Basics

Can mix let-in expressions and let bindings:

let deg_to_rad d =

let pi = 3.14 and half_circle = 180.0 in

d *. (pi /. half_circle) ;;

val deg_to_rad : float -> float = <fun>

deg_to_rad 180.0 ;;

- : float = 3.14000000000000057

We’ll talk more about functions and types as we go

© S. Bowers CPSC 326, Spring 2025 10

OCaml Basics

Can also “run” a source file ... e.g., hello.ml: print_endline "Hello, World!"

To run from the command line:

$ ocaml hello.ml

"Hello World!"

To compile and run as an executable

$ ocamlopt -o hello hello.ml

$./hello

"Hello World!"

Can also load into the REPL ... e.g., funs.ml: let inc x = x + 1

let dec x = x -1

#use "inc_dec.ml" ;;

inc 1 ;;

- : int = 2

© S. Bowers CPSC 326, Spring 2025 11

