Lecture 30:
• Quiz 7
• More on PL paradigms

Announcements:
• HW-6 out
Exercise: Write a turing machine to flip a’s and b’s

<table>
<thead>
<tr>
<th>Current State</th>
<th>Current Symbol</th>
<th>New Symbol</th>
<th>New State</th>
<th>Direction</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_1</td>
<td>a</td>
<td>b</td>
<td>s_1</td>
<td>Right</td>
</tr>
<tr>
<td>s_1</td>
<td>b</td>
<td>a</td>
<td>s_1</td>
<td>Right</td>
</tr>
<tr>
<td>s_1</td>
<td>Blank</td>
<td>Blank</td>
<td>s_2</td>
<td>Left</td>
</tr>
</tbody>
</table>

- s_1 is the start state, s_2 is halt state

Exercise: Write a turing machine to subtract 1 from a binary number ≥ 1

Basic Approach: Find first 1, flip to 0, then write 1’s until end

- the “alphabet” is $\{0, 1\}$ (binary digits) as opposed to $\{a, b\}$
- s_1 is the start state (go to end), s_2 (find first 1), s_3 (write 1’s), s_4 (halt)

<table>
<thead>
<tr>
<th>Current State</th>
<th>Current Symbol</th>
<th>New Symbol</th>
<th>New State</th>
<th>Direction</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_1</td>
<td>0</td>
<td>0</td>
<td>s_1</td>
<td>Right</td>
</tr>
<tr>
<td>s_1</td>
<td>1</td>
<td>1</td>
<td>s_1</td>
<td>Right</td>
</tr>
<tr>
<td>s_1</td>
<td>Blank</td>
<td>Blank</td>
<td>s_2</td>
<td>Left</td>
</tr>
<tr>
<td>s_2</td>
<td>0</td>
<td>0</td>
<td>s_2</td>
<td>Left</td>
</tr>
<tr>
<td>s_2</td>
<td>1</td>
<td>0</td>
<td>s_3</td>
<td>Right</td>
</tr>
<tr>
<td>s_2</td>
<td>Blank</td>
<td>Blank</td>
<td>s_4</td>
<td>Left</td>
</tr>
<tr>
<td>s_3</td>
<td>0</td>
<td>1</td>
<td>s_3</td>
<td>Right</td>
</tr>
<tr>
<td>s_3</td>
<td>Blank</td>
<td>Blank</td>
<td>s_4</td>
<td>Left</td>
</tr>
</tbody>
</table>
Programming Languages and “Turing Completeness”

A PL is “Turing Complete” if it can simulate any Turing Machine

- Every computable function can be computed by a TM (Church-Turing thesis)
- If a PL is turing complete, it can express all possible computations

Note: Can write a TM that can simulate (run) all other TMs (encoded on tape)

- such a TM is called “universal” (i.e., a machine that can run machines)

Examples of languages that are not Turing Complete:

- Markup languages: HTML, XML, JSON, YAML, ...
- Many “domain-specific” languages: (basic) SQL, regular expressions

Turing Completeness not necessarily tied to specific constructs

- imperative languages with conditional branching (if-goto, while loops) and arbitrary mem access (# of variables)
- whereas functional and logic-based languages have other constructs such as pattern matching and recursion (no goto, no loops)

“Languages” that are (accidentally) Turing Complete

- Musical Notation (requires human to be the memory/tape)
- Excel spreadsheets w/ formulas
- Pokemon Yellow (https://www.youtube.com/watch?v=p5T8lyHkHtI)
- Magic The Gathering card game (human selects moves)
- PowerPoint animations (requires human to follow links)
The Lambda (λ) Calculus

From λ-calculus to functional programming

- TMs are (roughly) the computation model behind imperative languages
- λ-calculus is (roughly) the computation model behind functional languages

Basic idea of λ-calculus

1. Unnamed, single-variable functions (λ “functions” aka “abstractions”)
 - $\lambda x.x$ takes an x and returns an x
 - $\lambda x.(\lambda y.x)$ takes x and returns a function that takes y and returns x
 - shorthand for multi-argument functions: $\lambda xy.x$

2. Function application
 - $(\lambda x.x)0$ applies the identity function to 0 (resulting in 0)
 - $(\lambda x.(\lambda y.x))ab$ reduces to a ... $(\lambda x.(\lambda y.x))ab \Rightarrow (\lambda y.a)b \Rightarrow a$

3. Expressions
 - Either a function, an application, a variable, or a constant
 - A function has the form: $\lambda x.e$ where x is a name and e an expression
 - An application has the form: e_1e_2 where both e’s are expressions

Computation in λ-calculus is via function application

- Given a function application such as:
 $$(\lambda x.x)y$$

- An application is evaluated by substituting x’s in the function body with y:
 $$(\lambda x.x)y = [y/x]x = y$$