
Lecture 30:

• Intro to OCaml

Announcements:

• HW-6 out, due Mon

© S. Bowers CPSC 326, Spring 2025 1

OCaml Intro

Getting started with OCaml ... https://ocaml.org

• Download opam (see website, follow instructions)

• Make sure you can run ocaml from the command line

Basic (high-level) OCaml features:

(1) A (mostly) “pure” functional language

That is, pure functions:

• no side effects (do not modify state)

• some nice features: e.g., memoization

• can lead to smaller, reusable functions

• and programs that are easier to debug ... and better correctness guarantees

Most functions we write in OCaml will be pure

• but OCaml allows for some side effects (arrays, references, I/O)

© S. Bowers CPSC 326, Spring 2025 2

OCaml Intro

(2) Functions are “first-class” objects ... like any other value

• pass functions as arguments, call within function

• return functions as values to other functions

... also allows partial functions (currying)

(3) Static typing ... and “strongly” typed

• Type checking done at compile time (statically)

• But also employs type inference (unobtrusive—w/out type annotations)

© S. Bowers CPSC 326, Spring 2025 3

OCaml Intro

(4) A “strict” language that allows for “ lazy evaluation”

• Strict languages “eagerly” evaluate function arguments

• Lazy languages defer evaluation until needed

(a) One benefit: (potentially) performance

• e.g., using quicksort can ask for first n items

• ... without sorting entire list

(b) Another benefit: “infinite” data structures

• and in particular, the ability to compute with them

• somewhat similar to iterators (or streams)

© S. Bowers CPSC 326, Spring 2025 4

OCaml Intro

(c) Another benefit: programmer-defined control structures

• e.g., short circuit evaluation of if-then-else

• this means you don’t need special constructs for control flow

In OCaml: ... sometimes called a “suspension”

let x = (1/0) ;; (* strict *)

Exception: Division_by_zero.

let y = lazy (1/0) ;; (* lazy -- defers evaluation *)

Lazy.force y ;; (* forces y to be evaluated *)

Exception: Division_by_zero.

let z = lazy (Lazy.force y * 2) ;; (* have to force y to do mult *)

Lazy.force z ;; (* z still deferred, until forced *)

Exception: Division_by_zero.

© S. Bowers CPSC 326, Spring 2025 5

OCaml Intro

(6) Plus more:

• user-defined “algebraic types”

• pattern matching with guards

• parametric polymorphism (with type inference)

Running OCaml (REPL) from the command line: ocaml

ocaml

OCaml version 5.2.0

Enter #help;; for help.

... type stuff here ...

• To exit type: Control-d or #quit ;;

Can run programs using: ocaml file.ml

(*) Can also use in VS Code (see https://ocaml.org)

© S. Bowers CPSC 326, Spring 2025 6

OCaml Basics

Simple arithmetic

2 + 3 ;;

- : int = 5

5 / 2 ;;

- : int = 2

1.0 /. 2.0 ;;

- : float = 0.5

5 mod 2 ;;

- : int = 1

5 * -2 ;;

- : int = -10

2.5 +. 3.1 ;;

- : float = 5.6

(+) 2 3 ;;

- : int = 5

The last one uses infix notation ... really (+) as a function

• ... you shouldn’t write arithmetic expressions using infix notation

© S. Bowers CPSC 326, Spring 2025 7

OCaml Basics

Comparison Operators: ... all the normal stuff

1 < 2 ;;

- : bool = true

1 == 1 ;; (* can also use 1 = 1 *)

- : bool = true

1 != 1 ;; (* can also use 1 <> 1 *)

- : bool = false

Logical operators: ... also the normal stuff

not (true && (false || true)) ;;

- : bool = false

© S. Bowers CPSC 326, Spring 2025 8

OCaml Basics

Q: What is wrong with the following?

1 < true ;;

Error: This expression has type bool but an expression

was expected of type int

1 < 2.0 ;;

Error: This expression has type float but an expression

was expected of type int

© S. Bowers CPSC 326, Spring 2025 9

