
Lecture 3:

• Compilation and Interpretation (basics)

Announcements:

• HW-0 out (finish before Fri)
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Typical Steps (Phases) of a Compiler
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Example of “separation of concerns” ... design strategy

• each phase / step has a specific task

• too complex to do all steps “all at once” ... note: single-pass vs multi-pass

• each phase makes it easier to maintain, optimize, extend, reuse system
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Interpreters
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• instead of producing machine code ...

• the interpreter is a program that executes the source code directly

There are many types of interpreters

1. Abstract Syntax Tree (AST) Interpreters

• execute the program over the AST directly

• may involve an optimization pass over the AST first
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Interpreters (cont)
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2. Bytecode Interpreters (aka VMs) ... what we’ll do

• intermediate representation is bytecode

• interpreter runs bytecode directly ... “write once run anywhere”

3. Just-in-time Compiler (JIT) ... “hybrid” approach

• instead of just interpreting bytecode, also generates and runs machine code

• monitor running code (e.g., frequent “hot spots”) and optimize accordingly
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Transpilers and Additional Notes

Transpilers

• translate from one high-level language to another (e.g., Python to C)

• includes same “front end” compilation steps

Compilers vs Transpilers:

• compilers translate from a high-level to a low-level language

• transpilers translate from a high-level to high-level language

AOT vs JIT: ... AOT = Ahead-of-Time

• AOT: generate low-level code (intermediate or machine) and execute it

• JIT: generate low-level code (machine language) as program executes

• JIT early examples: LISP (60’s), Smalltalk (80’s), Java (90’s)

• more JIT: .NET, LLVM, PHP, V8 (javascript), CPython (experimental)
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