Lecture 3:

® Compilation and Interpretation (basics)

Announcements:

® HW-0 out (finish before Fri)

© S. Bowers CPSC 326, Spring 2025 1

Typical Steps (Phases) of a Compiler

Compiler Front End
Source Lexical aoken Syntax ™ | Semantic
Code > Analysis > Analysis > Analysis
7 (Lexer) (Parser) (Checker)
Abstract Syntax
Tree (AST)
y
Machine . Intermediate Intermediate -
Computer Ceis Mgc:llne Code (IR) | Optimization |_ ©°% (R Inteémzdlate
, < ode [« e < ode
(execution) Generation HefptimT2E) Generation
Back End
Example of “separation of concerns” ... design strategy
® cach phase / step has a specific task
® too complex to do all steps “all at once” ... note: single-pass vs multi-pass

® cach phase makes it easier to maintain, optimize, extend, reuse system

© S. Bowers CPSC 326, Spring 2025 2

Interpreters

Interpreter (execution)

Abstract Syntax
Source _ Sameasin Tree (AST) Depends on
Code " a Compiler Approach
I 4
Front End Back End

® instead of producing machine code ...

® the interpreter is a program that executes the source code directly

There are many types of interpreters

1. Abstract Syntax Tree (AST) Interpreters
® execute the program over the AST directly

® may involve an optimization pass over the AST first

© S. Bowers CPSC 326, Spring 2025 3

Interpreters (cont)

Interpreter (execution)
Ab. N
Source o ?::‘:;Ag%'ax Bytecode Bytecode o Bytecode Mvm:'al
Code " aCompiler | Generation >| Optimizer T ?ch)n ©
7
Front End Back End
2. Bytecode Interpreters (aka VMs) ... what we'll do
® intermediate representation is bytecode
® interpreter runs bytecode directly ... 'write once run anywhere”
3. Just-in-time Compiler (JIT) ... "hybrid" approach

® instead of just interpreting bytecode, also generates and runs machine code

® monitor running code (e.g., frequent “hot spots”) and optimize accordingly

© S. Bowers CPSC 326, Spring 2025 4

Transpilers and Additional Notes

Transpilers
® translate from one high-level language to another (e.g., Python to C)

® includes same “front end” compilation steps

Compilers vs Transpilers:
® compilers translate from a high-level to a low-level language

® transpilers translate from a high-level to high-level language

AOT vs JIT: ... AOT = Ahead-of-Time
® AOT: generate low-level code (intermediate or machine) and execute it
® JIT: generate low-level code (machine language) as program executes
® JIT early examples: LISP (60's), Smalltalk (80's), Java (90's)
® more JIT: .NET, LLVM, PHP, V8 (javascript), CPython (experimental)

© S. Bowers CPSC 326, Spring 2025

