
Lecture 3:

• Compilation and Interpretation (basics)

Announcements:

• HW-0 out (finish before Fri)

© S. Bowers CPSC 326, Spring 2025 1

Typical Steps (Phases) of a Compiler

Back End

Source
Code

Lexical
Analysis
(Lexer)

Syntax
Analysis
(Parser)

Semantic
Analysis
(Checker)

Intermediate
Code 

Generation

Source
Code

Optimization
(Optimizer)

Machine 
Code 

Generation

Computer
(execution)

Token 
Stream

Abstract Syntax 
Tree (AST)

Front End

Abstract Syntax 
Tree (AST)

Intermediate 
Code (IR)

Intermediate 
Code (IR)

Compiler

Machine
Code

Example of “separation of concerns” ... design strategy

• each phase / step has a specific task

• too complex to do all steps “all at once” ... note: single-pass vs multi-pass

• each phase makes it easier to maintain, optimize, extend, reuse system

© S. Bowers CPSC 326, Spring 2025 2



Interpreters

Back End

Source
Code
Source
Code

Front End

Abstract Syntax 
Tree (AST)

Interpreter (execution)

Depends on 
Approach

Same as in 
a Compiler

• instead of producing machine code ...

• the interpreter is a program that executes the source code directly

There are many types of interpreters

1. Abstract Syntax Tree (AST) Interpreters

• execute the program over the AST directly

• may involve an optimization pass over the AST first

© S. Bowers CPSC 326, Spring 2025 3

Interpreters (cont)

Back End

Source
Code
Source
Code

Front End

Abstract Syntax 
Tree (AST)

Interpreter (execution)

Same as in 
a Compiler

Bytecode
Generation Optimizer

Bytecode Virtual
Machine 

(VM)

Bytecode

2. Bytecode Interpreters (aka VMs) ... what we’ll do

• intermediate representation is bytecode

• interpreter runs bytecode directly ... “write once run anywhere”

3. Just-in-time Compiler (JIT) ... “hybrid” approach

• instead of just interpreting bytecode, also generates and runs machine code

• monitor running code (e.g., frequent “hot spots”) and optimize accordingly

© S. Bowers CPSC 326, Spring 2025 4



Transpilers and Additional Notes

Transpilers

• translate from one high-level language to another (e.g., Python to C)

• includes same “front end” compilation steps

Compilers vs Transpilers:

• compilers translate from a high-level to a low-level language

• transpilers translate from a high-level to high-level language

AOT vs JIT: ... AOT = Ahead-of-Time

• AOT: generate low-level code (intermediate or machine) and execute it

• JIT: generate low-level code (machine language) as program executes

• JIT early examples: LISP (60’s), Smalltalk (80’s), Java (90’s)

• more JIT: .NET, LLVM, PHP, V8 (javascript), CPython (experimental)

© S. Bowers CPSC 326, Spring 2025 5


