Lecture 29:

® )\-calculus (cont)

Announcements:
o HW-6 out
® Extra Credit proposal due

® Exam 2 Mon

© S. Bowers CPSC 326, Spring 2025 1

From A-Calculus to Functional Programming

TMs are (roughly) the MoC for imperative languages
... A-calculus is (roughly) the MoC for functional languages

Basic idea of )\-calculus

(1) Unnamed, single-variable functions ... A functions aka “abstractions”
® \z.x takes an x and returns an z
® \z.(A\y.x) takes x and returns a function that takes y and returns x

® ... shorthand for multi-argument functions: Axy.x

(2) Function application
® (Az.x)0 applies the identity function to O (resulting in 0)
® (Az.(Ay.x))ab reduces to a o Az.(Ay.z))ab = (Ay.a)b=a

® .. where = denotes a one-step application

© S. Bowers CPSC 326, Spring 2025 2




The \-Calculus

(3) Expressions
® Either a function, an application, a variable, or a constant
® General form of a function: Az.e where x is a variable and e an expression

® An application has the form: ejes where both €e's are expressions

Computation in A-calculus is via function application
® Given an expression (function application) such as:
(Az.x)y

® An application is evaluated by substituting x's in the function body with y:

(Az.z)y = [y/z]z =y

© S. Bowers CPSC 326, Spring 2025

The M\-Calculus

Can represent “true” and “false” as expressions (function applications)

T = Xx.(\y.x) (True)
F = Xx.(A\y.y) (False)

And use these to define basic logical operators (AND, OR, NOT):

AND = \z.(A\y.zy(Au.(Av.v))) = Ax.(A\y.zyF)
OR = \z.(Ay.x(Au.(Av.u))y) = Ax.(Ay.xTy)

NOT = Az.z(Au.(Av.v))(Ay.(Az.y)) = Az.xF'T

© S. Bowers CPSC 326, Spring 2025




The \-Calculus

Examples: ... note prefix notation, e.g., AND T' T

NOTT = (\z.2FT)T = TFT = (Az.(Ay.z))FT = (\y.F)T = F

NOTF = (Az.aFT)F = FFT = (Axz.(Ay.y))FT = (Ay.y)T = T
ANDT T = (Az.(A\y.zyF))TT = (Ay.TyF)T = TTF = (Az.(Ay.z))TF = Oy.T)F =T
ANDT F = (Az.(A\y.zyF))TF = (A\y.TyF)F = TFF = (Az.(Ay.z))FF = (\y.F)F = F

ORFT = (Ax.(Ay.2Ty))FT = (A\y.FTy)T = FTT = (Az.Ay.y)TT = Ay.y)T =T

Note: Can use an expression (c e1 e2) to represent: IF ¢ THEN e; ELSE es

® eg., Te; ez means IF T" THEN e; ELSE eo

© S. Bowers CPSC 326, Spring 2025 5

The M\-Calculus

Can also express recursion ... called a “Y combinator”

R = (Ay.(Az.y(zx))(Azx.y(zz)))
Basic idea: R calls a function y then “regenerates” itself

For example, applying R to a function g yields:

Ry = (Ay.(Az.y(z2))(Az.y(zx)))g (1)
= (Az.g(zz))(Az.g(zz)) (2)
= g9((Az.g(zz))(Az.g(z7))) (3)
= g(Ry) (4)
= 9(9(Ry)) (5)
= and so on (6)

Note in (4) that g(R,) since Ry = (Az.g(zx))(Az.g(zx)) from (2)

. can stop recursion using conditionals

© S. Bowers CPSC 326, Spring 2025 6




The \-Calculus

As the examples show:
® )\ calculus is inherently higher order — functions passed as arguments
® all functions are single argument ... enables currying

® allows for partial function application ... e.g.: add_one = (Ax.(A\y.+xy)) 1

Different paradigms, same power ...

A-calculus and Turing Machines have the same expressive power!

© S. Bowers CPSC 326, Spring 2025 7




