
Lecture 28:

• TMs (cont)

• λ-calculus

Announcements:

• HW-6 out

• Extra Credit proposal due Fri

• Exam 2 Mon

© S. Bowers CPSC 326, Spring 2025 1

Turing Machines

Basic Idea: ... even lower level than RAM Machines!

1. Infinite tape of memory cells, each cell holds one symbol

2. Read/write head that can move left/right (L/R) one cell at a time

3. State register that stores the current state of the machine

4. Transition table: Curr State & Symbol → New State, Symbol, & Direction

Example: replace a’s with b’s
0 1 2 3 4 5 6

a b b a · · · the infinite tape
↑
qi the tape head (with the machine in state qi)

Special blank (␣) symbol, and halting states qhalt, qyes, qno

Many variants (e.g., multitape machines, non-deterministic)

© S. Bowers CPSC 326, Spring 2025 2



Turing Machines

Example transition table: (where q1 is start symbol)

Current State Current Symbol New Symbol New State Direction

q1 a b q1 R

q1 b b q1 R

q1 ␣ ␣ qhalt L

A TM to check if a string of 0’s and 1’s has an even number of 1’s ...

Current State Current Symbol New Symbol New State Direction

q1 0 0 q1 R

q1 1 1 q2 R

q1 ␣ ␣ qyes R

q2 0 0 q2 R

q2 1 1 q1 R

q2 ␣ ␣ qno R

© S. Bowers CPSC 326, Spring 2025 3

Turing Machines

More examples:

• Add one to a binary number (go to end, move left adding 1)

• Check for palindrome (zig-zag, mark as read, states as symbols)

Turing Machines are an imperative model of computation ...

• specify how computation should be carried out (very low level)

• inspiration for RAM machines

It is possible to write a TM that simulates all other TMs

• the input is an encoding of the transition table of the TM to run

• called a “Universal” TM

© S. Bowers CPSC 326, Spring 2025 4



Turing Machines

A PL is “Turing Complete” if it can simulate any TM (i.e., is universal)

• All computable functions are computable by a TM (Church-Turing thesis)

• If a PL is turing complete, it can express all possible computations

• No other model of computation found that can perform tasks a TM cannot

Examples of languages that are not Turing Complete:

• Markup languages: HTML, XML, JSON, YAML, ...

• Many “domain-specific” languages: (basic) SQL, regular expressions

Turing Completeness not necessarily tied to specific constructs

• imperative languages with conditional branching (if-goto, while loops) and
arbitrary mem access (# of variables)

• whereas functional and logic-based languages have other constructs such
as pattern matching and recursion (no goto, no loop constructs)

© S. Bowers CPSC 326, Spring 2025 5

From λ-Calculus to Functional Programming

TMs are (roughly) the MoC for imperative languages
... λ-calculus is (roughly) the MoC for functional languages

Basic idea of λ-calculus

(1) Unnamed, single-variable functions ... λ functions aka “abstractions”

• λx.x takes an x and returns an x

• λx.(λy.x) takes x and returns a function that takes y and returns x

• ... shorthand for multi-argument functions: λxy.x

(2) Function application

• (λx.x)0 applies the identity function to 0 (resulting in 0)

• (λx.(λy.x))ab reduces to a ... (λx.(λy.x))ab ⇒ (λy.a)b ⇒ a

• ... where ⇒ denotes a one-step application

© S. Bowers CPSC 326, Spring 2025 6



The λ-Calculus

(3) Expressions

• Either a function, an application, a variable, or a constant

• General form of a function: λx.e where x is a variable and e an expression

• An application has the form: e1e2 where both e’s are expressions

Computation in λ-calculus is via function application

• Given an expression (function application) such as:

(λx.x)y

• An application is evaluated by substituting x’s in the function body with y:

(λx.x)y = [y/x]x = y

© S. Bowers CPSC 326, Spring 2025 7


