Lecture 28:

- TMs (cont)
- λ -calculus

Announcements:

- HW-6 out
- Extra Credit proposal due Fri
- Exam 2 Mon

© S. Bowers

CPSC 326, Spring 2025

1

Turing Machines

Basic Idea:

... even lower level than RAM Machines!

- 1. Infinite tape of memory cells, each cell holds one symbol
- 2. **Read/write head** that can move left/right (L/R) one cell at a time
- 3. State register that stores the current state of the machine
- 4. *Transition table*: Curr State & Symbol \rightarrow New State, Symbol, & Direction

Example: replace a's with b's

Special blank ($_{\sqcup}$) symbol, and halting states q_{halt} , q_{yes} , q_{no} Many variants (e.g., multitape machines, non-deterministic)

Turing Machines

Current State	Current Symbol	New Symbol	New State	Direction
q_1	а	b	q_1	R
q_1	b	b	q_1	R
q_1	Ц	Ц	q_{halt}	L

Example transition table: (where q_1 is start symbol)

A TM to check if a string of 0's and 1's has an even number of 1's ...

Current State	Current Symbol	New Symbol	New State	Direction
q_1	0	0	q_1	R
q_1	1	1	q_2	R
q_1	Ц	Ц	q_{yes}	R
q_2	0	0	q_2	R
q_2	1	1	q_1	R
q_2	Ц	L	q_{no}	R

© S. Bowers

CPSC 326, Spring 2025

3

Turing Machines

More examples:

- Add one to a binary number (go to end, move left adding 1)
- Check for palindrome (zig-zag, mark as read, states as symbols)

Turing Machines are an *imperative* model of computation ...

- specify how computation should be carried out (very low level)
- inspiration for RAM machines

It is possible to write a TM that simulates all other TMs

- the input is an encoding of the transition table of the TM to run
- called a "Universal" TM

Turing Machines

A PL is "Turing Complete" if it can simulate any TM (i.e., is universal)

- All computable functions are computable by a TM (Church-Turing thesis)
- If a PL is turing complete, it can express all possible computations
- No other model of computation found that can perform tasks a TM cannot

Examples of languages that are *not* Turing Complete:

- Markup languages: HTML, XML, JSON, YAML, ...
- Many "domain-specific" languages: (basic) SQL, regular expressions

Turing Completeness not necessarily tied to specific constructs

- imperative languages with conditional branching (if-goto, while loops) and arbitrary mem access (# of variables)
- whereas functional and logic-based languages have other constructs such as pattern matching and recursion (no goto, no loop constructs)

© S. Bowers

CPSC 326, Spring 2025

5

From λ -Calculus to Functional Programming

TMs are (roughly) the MoC for imperative languages ... λ -calculus is (roughly) the MoC for functional languages

Basic idea of λ -calculus

(1) Unnamed, single-variable functions $\dots \lambda$ functions aka "abstractions"

- $\lambda x.x$ takes an x and returns an x
- $\lambda x.(\lambda y.x)$ takes x and returns a function that takes y and returns x
- ... shorthand for multi-argument functions: $\lambda xy.x$
- (2) Function application
 - $(\lambda x.x)0$ applies the identity function to 0 (resulting in 0)
 - $(\lambda x.(\lambda y.x))ab$ reduces to a ... $(\lambda x.(\lambda y.x))ab \Rightarrow (\lambda y.a)b \Rightarrow a$
 - ... where \Rightarrow denotes a one-step *application*

The λ -Calculus

(3) Expressions

- Either a function, an application, a variable, or a constant
- General form of a function: $\lambda x.e$ where x is a variable and e an expression
- An application has the form: e_1e_2 where both e's are expressions

Computation in $\lambda\text{-calculus}$ is via function application

• Given an expression (function application) such as:

 $(\lambda x.x)y$

• An application is evaluated by substituting x's in the function body with y:

$$(\lambda x.x)y = [y/x]x = y$$

© S. Bowers

CPSC 326, Spring 2025

7