
Lecture 16:

• Quiz 4

• Semantic analysis (cont)

Announcements:

• HW-3 due

• HW-4 out

• Proj. Part 1 due next Fri.

© S. Bowers CPSC 326, Spring 2025 1

Basic Semantic Analysis Examples

Programs can be syntactically correct but still have many errors

• Goal: Find and report errors statically (without running program code)

Detect type errors, e.g.:

x = 0 + "1" // int + string isn 't allowed

if 42 <= true { ... } // int <= bool isn 't allowed

Detect “use before def” errors, e.g.:

var x: int = 42 + y // y isn 't defined

var y: int = x + f(x) // f isn 't defined

Detect function call errors, e.g.:

int add(x: int , y: int) {return x + y}

void main() {

var r1: int = add(1, 2, 3); // wrong number of args

var r2: int = add(3.14 , 1); // wrong argument types

var r3: bool = add(1, 2); // wrong resulting type

}

and so on ...

© S. Bowers CPSC 326, Spring 2025 2



Basic Semantic Analysis Examples

Examples of other errors detected during static analysis (non exhaustive)

• duplicate function names, duplicate struct names

• parameters with duplicate names, fields with duplicate names

• variable shadowing

• main function not defined

• struct type not defined (when creating an object or array)

• field not found in path expression

• dereferencing a non-struct type

Type errors often based on a set of typing rules (aka Judgements)

• the rules define how types can be “ inferred” (inference rules)

• statements or expressions that violate the rules have type errors

© S. Bowers CPSC 326, Spring 2025 3

Basic Idea of Semantic Analysis for HW-4

(1) navigate the AST using the Visitor pattern
(2) during navigation infer types and look for errors

var x: int = 10

while x > 0 {

x = x - y

}

For “var x: int = 10”

• check / infer rhs type, compare against declared type, remember x’s type

For “while x > 0 { ... } ”

• ensure x is declared and compatible with 0 (both ints), check body

For “x = x - y”

• rhs: ensure x and y are declared and types are compatible for -

• lhs: ensure x declared and rhs result type (int) is compatible with x’s type

© S. Bowers CPSC 326, Spring 2025 4



Basic Idea of Semantic Analysis for HW-4

Example suggests we need to keep track of names and their types!

• we’ll do this using a symbol table

• data structure for managing bindings (id -> type) in environments

MyPL uses static (i.e., lexical or block) scoping

• we associate to each block an environment (set of bindings)

• blocks (i.e., environments) can be nested

• bindings are found at a location by looking through all containing blocks

(∗) Note: a slight abuse of the notion of an “environment”

• where an “environment” is typically all of the containing blocks

© S. Bowers CPSC 326, Spring 2025 5

Symbol Table

Stores variable state in a “stack” of environments as program is being checked

public class SymbolTable {

private Deque <Map <String ,DataType >> environments = new ArrayDeque <>();

// add and remove environments

public void pushEnvironment () { ... }

public void popEnvironment () { ... }

// check if variable name is bound

public void exists(String name) { ... }

public boolean existsInCurrEnv(String name) { ... }

// add a binding (overwrites existing name binding)

public void add(String name , DataType type) { ... }

// returns the name's binding

public DataType get(String name) { ... }

// print the symbol table (for debugging)

public String toString () { ... }

}

© S. Bowers CPSC 326, Spring 2025 6


