
Lecture 15:

• Semantic analysis (intro)

Announcements:

• HW-3 due Wed

© S. Bowers CPSC 326, Spring 2025 1

Terms Relevant to Semantic Analysis

(1) Denotable Objects

• Items that can be “named” in a programming language

• By the programmer (e.g., variables, functions, classes)

• By the language itself (e.g., primitive types, built-in functions)

(2) Blocks

• A block is a textual region of a program (e.g., function body, loop body)

• A block uses syntax to define start and end

• Declarations (e.g., of user-defined denotable objects) occur within “blocks”

© S. Bowers CPSC 326, Spring 2025 2



Terms Relevant to Semantic Analysis

(3) Bindings

• The association between names and objects ... name → object

• Type bindings connect names to their types

• Location bindings connect names to their locations in memory

• Value bindings connect names to their corresponding values

(4) Environments (aka Contexts)

• The current set of bindings of a program, statement, expression

• Typing environments give name → type bindings (currently “visible”)

• Can also speak of environments at runtime (for locations and values)

© S. Bowers CPSC 326, Spring 2025 3

Terms Relevant to Semantic Analysis

(5) Scope Rules (aka Visibility Rules)

• Specify what names are visible in which blocks

• An object is local to the block it is declared in

• In general, an object is visible in its local and nested blocks

• To find the declaration, look in the current block and containing blocks

(6) Static and Dynamic ... review

• Static implies decisions made at compile time (before runtime)

• Dynamic implies decisions made at runtime

© S. Bowers CPSC 326, Spring 2025 4



Terms Relevant to Semantic Analysis

(7) Static Scope (aka Lexical Scope)

• The visibility of names determined at compile time

• Based on the text of the source code

• What we normally think of as scope (visibility)

(8) Dynamic Scope

• The visibility of names determined at runtime

• Based on last association created for the name

(9) Most (modern) PLs primarily adopt static scoping rules

• some tricky cases though ...

• e.g., with nested functions, passing code blocks to functions, closures

© S. Bowers CPSC 326, Spring 2025 5

Basic Semantic Analysis Examples

Programs can be syntactically correct but still have many errors

• Goal: Find and report errors statically (without running program code)

Detect type errors, e.g.:

x = 0 + "1" // int + string isn 't allowed

if 42 <= true { ... } // int <= bool isn 't allowed

Detect “use before def” errors, e.g.:

var x: int = 42 + y // y isn 't defined

var y: int = x + f(x) // f isn 't defined

Detect function call errors, e.g.:

int add(x: int , y: int) {return x + y}

void main() {

var r1: int = add(1, 2, 3); // wrong number of args

var r2: int = add(3.14 , 1); // wrong argument types

var r3: bool = add(1, 2); // wrong resulting type

}

and so on ...

© S. Bowers CPSC 326, Spring 2025 6


