
CPSC 326: Homework 1 Feb. 3

Goals:

• Implement the MyPL lexical analyzer;

• Practice working with unit tests.

Instructions:

1. Use the GitHub Classroom link (posted in Piazza) to copy the starter code into your own repository.
Clone the repository in the directory where you will be working on the assignment.

2. Complete the nextToken() function in Lexer.java.

3. Ensure your code passes the unit tests provided in LexerTests.java. (Note you will want to do steps
2 and 3 iteratively.)

4. Ensure your lexer implementation correctly handles the example files within the examples subdirec-
tory. Note that there are two MyPL (.mypl) files and two corresponding output files (.out). Your
lexer output should identically match the output files.

5. Create additional unit tests as specified in the TODO comment at the end of LexerTests.java.

6. Create a short write up as a pdf file named hw1-writeup.pdf. For this assignment, your write
up should provide a short description of the unit tests you created and any challenges and/or issues
you faced in finishing the assignment and how you addressed them. The description of the tests can
be short, but should state why you designed the tests the way you did (i.e., justify why the test is
non-trivial / interesting, and what it is actually testing).

7. Submit your program by ensuring all of your code and writeup is pushed to your GitHub repo. You
can verify that your work has been submitted via the GitHub page for your repo.

Additional Requirements: Note that in addition to items listed below, details will also be discussed in
class and in lecture notes.

1. It is fine to implement the nextToken() function without breaking it into separate helper functions
(i.e., you can have it be one large function). However, if you would like to “modularize” it, you are
welcome to. If you do break it out into helper functions, you must explain how you did this in your
writeup. Also be sure to comment any helper functions you create.

2. You must implement your nextToken() function by reading one character at a time via the read()
and peek() helper functions provided in the Lexer class. In addition, to report errors, you must use
the error() helper function provided by the Lexer class. The isEOF() and isEOL() functions are
also provided to help you check for an EOF (end of file) character and end of line, respectively.

3. Java provides some useful helper functions for checking for specific types of characters. In particular,
I used the Character.isWhitespace() (check for whitespace, which includes newlines, tabs, and so
on), Character.isDigit(), Character.isLetter(), and Character.isLetterOrDigit() functions
in my implementation.

1



4. The full set of token types for MyPL are provided in the TokenType.java file. Note that your
nextToken() function is creating and returning Token objects with these listed types.

5. Note that nextToken() implements an iterator, i.e., stream-based, model. This means that one call
to nextToken() returns only the next token in the input. The Lexer object maintains state, including
where it is in the current input (to be able to return the next token in the input, and so on).

6. The Lexer class maintains line and column member variables. These variables are to keep track
of the current line and column for building tokens. Your nextToken() function will need to update
these member variables and also use them to build up new token objects.

7. Each token should have a non-empty lexeme. For tokens with “unimportant” lexemes, you can just
use their corresponding symbol. For example, the lexeme for + should be "+" and the lexeme for int
should be "int".

8. The hw1_hello.out and hw1_tokens.out files within the examples subdirectory give examples of
what your results for running ./mypl -m LEX on the files should be. Your program must output the
exact same information as what is in these files to be considered correct. Note to check your output
against those in the given output (.out) files, you might consider using the UNIX diff command-line
tool. Many editors also support some type of diff command as well.

9. A non-comprehensive set of unit tests are provided in the LexerTests.java file. To run these tests,
simply use the command mvn test. (Note that many IDEs, including VS Code, provide integrated
support for JUnit, but using this is not requried.) Your implementation will need to pass all of the
unit tests from LexerTests.java to be considered correct.

10. Note that an additional (simple) TokenTests.java file is also provided. These tests are also run
when you issue the command mvn test. To run just the lexer tests, use:

mvn test -Dtest=LexerTests

To run a specific test in LexerTests, use:

mvn test -Dtest=LexerTests#TestName

For example, to run the first test use:

mvn test -Dtest=LexerTests#emptyInput

11. Make sure you add your name to the top of the Lexer.java file.

Hints and Tips:

1. The basic layout for nextToken() that I used in my implementation is, in order: (1) read all whites-
pace (checking for EOF); (2) check for EOF; (3) check for single character tokens (e.g., arithmetic
operators, punctuation, etc.); (4) check for the trickier symbols that can involve or require two char-
acters (e.g., < vs <=, !=, and so on); (5) check for comments (note that we will use COMMENT tokens
initially, then ignore them in the parser later); (6) check for string values; (7) check for integer and
double values; (8) check for reserved words; and then (9) identifiers. Again, it is much easier to do
this incrementally as opposed to all at once and then try to debug.

2



2. Note that the unit tests provided are not guaranteed to be comprehensive. Just because your program
passes the unit tests does not mean your code is correct! Also, we may grade your code with additional
unit tests than those provided. Feel free to add additional unit tests (more than those asked for) to
LexerTests.java.

Homework Submission and Grading. Your homework will be graded using the files you have pushed
to your GitHub repository. Thus, you must ensure that all of the files needed to compile and run your code
have been successfully pushed to your GitHub repo for the assignment. Note that this also includes your
homework writeup. This homework assignment is worth a total of 30 points. The points will be allocated
according to the following.

1. Correct and Complete (20 points). Your homework will be evaluated using a variety of different
tests (for most assignments, via unit tests as well as test runs using specific input files). Each failed
test will result in a loss of 4 points. If 5 or more tests fail, but some tests pass, 4 points (out of the 20)
will be awarded as partial credit. Note that all 20 points may be deducted if your code does not run,
large portions of work are missing or incomplete (e.g., stubbed out), and/or the specified techniques,
design, or instructions were not followed. Because assignments build on each other, in most cases you
will need all tests to pass before moving to the next assignment.

2. Evidence and Quality of Testing (5 points). For each assignment, you must provide additional
tests that you used to ensure your program works correctly. Note that for most assignments, a specific
set of tests will be requested. A score of 0 is given if no additional tests are provided, 1–4 points if
the tests are only partially completed (e.g., missing tests) or the tests provided are of low quality, and
5 if the minimum number of tests are provided and are of sufficient quality.

3. Clean Code (2 points). In this class, “clean code” refers to consistent and proper code formatting
(indentation, white space, new lines), use of appropriate comments throughout the code, no debugging
output, no commented out code, meaningful variable names and helper functions (if allowed), and
overall well-organized, efficient, and straightforward code that uses standard coding techniques. A
score of 0 is given if there are major issues, 1 if there are minor issues, and 2 if the “cleanliness” of
the code submitted is satisfactory for the assignment.

4. Writeup (3 points). Each assignment will require you to provide a small writeup addressing
challenges you faced and how you addressed them as well as an explanation of the tests you developed.
Additional items may also be requested depending on the assignment. Homework writeups do not
need to be long, and instead, should be clear and concise. A score of 0 is given if no writeup is
provided, 1 if parts are missing, and 2 if the writeup is satisfactory.

3


