Lecture 24:
• Quiz 4
• Query processing (cont)

Announcements:
• R-3 due Mon
• Project out
• HW-4 out

Query Operators
FROM clause ▷ ◁ (join)

SELECT *
FROM R JOIN S ON (R.sid = S.sid)

Assumptions:
• 8 KB sized pages, B available buffer page slots
• 100,000 Page I/Os per second ... 1 Page I/O = 0.01 milliseconds
• use Page I/Os as cost metric ... but relate to time to help see difference

Data Assumptions:
• R has \(m \) rows in \(M \) pages ... \(M = 1000, m = 100,000 \)
• S has \(n \) rows in \(N \) pages ... \(N = 500, n = 40,000 \)
• In \(R ▷ ◁ S \), \(R \) is outer and \(S \) is inner relation
Query Operators

Naive (Simple) Nested Loop Join

for each row \(r \) in outer
for each row \(s \) in inner
if \(r \) and \(s \) match then add new row \(r, s \) to output buffer

How does this actually work?

- Read a page from \(R \) costs \(M \) total Page I/Os
- Compare a row \(r \) to each row \(s \) each \(r \) costs \(N \) Page I/Os

The total cost: \(M + m \times N \)

- In our scenario, \(1000 + 100,000 \times 500 = 50,001,000 \) Page I/Os
- Or about 500 seconds!

What if we make \(S \) the outer? (Yes 40s) ... use smaller relation as outer

Page-Oriented Nested Loop Join

for each page in outer
for each page in inner
for each row \(r \) in outer page
for each row \(s \) in inner page
if \(r \) and \(s \) match then add new row \(r, s \) to output buffer

How does this actually work?

- For each page in \(R \), scan each page in \(S \)

The total cost: \(M + M \times N \)

- In our scenario, \(1000 + 1000 \times 500 = 501,000 \) Page I/Os
- Or about 5 seconds ... better, but still slow

What if we make \(S \) the outer? ... 500,500 Page I/Os (so marginally)
Query Operators

Block Nested Loop Join

- Read $B - 2$ outer block pages save 1 for inner page, 1 for output
- Compare all $B - 2$ pages of rows with all inner page rows

The total cost: $M + \lceil M/(B - 2) \rceil \times N$

- Assume $B = 102$... very small! (MySQL default is 128 MB)
- In our scenario, $1000 + \lceil 1000/100 \rceil \times 500 = 6,000$ Page I/Os
- Or about 0.06 seconds

What if we make S the outer? ... 5,500 Page I/Os (so marginally)