The Heap data structure

Often used for
- Implementing “priority queues” and “heapsort” (an $O(n \log n)$ sort)

Based on a binary tree ...
- each “node” contains a value, plus a left and right child

Min Heap main idea ...
- each node has a smaller value than its children ... heap constraint
- Q: what value does the root have? ... the smallest value

• a "complete" binary tree (filled left-to-right)
 - insert:
 1. add node to next open location
 2. "trickle up" as needed to maintain heap constraint

- delete:
 1. replace root value with last heap value
2. delete last heap node
3. “trickle down” as needed to maintain heap constraint

You’ll need to define helper functions ...

For deleteMin

- lastChild ... to return the value of the last child
- deleteLast ... to delete the last node in the Heap
- trickleDown

For insert (probably the hardest function)

- isFull ... to check if tree is full (for finding empty spot)
- height ... to get the height of tree (for finding empty spot)
- trickleUp

Basic idea for insert before trickle up

- assuming the left and right subtrees aren not empty —
- insert into the left subtree if:
- left subtree isn’t full
- left and right are same height and right subtree is full

• otherwise insert into right subtree

Note there are other ways to do `insert` as well ...

One way to do `isFull`

\[
\text{isFull} :: \text{Tree}\ a \rightarrow \text{Bool} \\
\text{isFull}\ \text{Nil} \quad = \text{True} \\
\text{isFull}\ (\text{Node}\ _\ \text{Nil}\ \text{Nil}) \quad = \text{True} \\
\text{isFull}\ (\text{Node}\ _\ \text{l}\ \text{Nil}) \quad = \text{False} \\
\text{isFull}\ (\text{Node}\ _\ \text{Nil}\ \text{r}) \quad = \text{False} \\
\text{isFull}\ (\text{Node}\ _\ \text{l}\ \text{r}) \quad = \text{isFull}\ \text{l} \land \text{isFull}\ \text{r} \land \text{height}\ \text{l} == \text{height}\ \text{r}
\]