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ABSTRACT: This paper focuses on info-gap uncertainty for structures optimized via genetic algorithms.  
Convex models, a non probabilistic method, are used to deal with uncertain static loads.  They are 
particularly effective when an info-gap situation arises, i.e. in the presence of severe uncertainties.  
Specifically, the uniform bound convex model is employed.  Through a superposition method, the structural 
response can be maximized to capture the worst-case scenario.  Traditionally, the use of convex models 
requires the uncertain parameters to be bound within a convex set.  Here, a series of nested convex sets is 
considered to allow the uncertainty to vary.  Design curves are derived that represent a tradeoff between the 
desired uncertainty and the structural cost.  These curves are useful tools in decision-making for the 
engineer. 

 
 

1 INTRODUCTION 

This paper focuses on info-gap uncertainty for opti-
mal structures.  Convex models (Ben-Haim and El-
ishakoff, 1990), a non probabilistic method to deal 
with uncertainties, are employed for static loads.  
The method requires that uncertain parameters be 
bound within a convex set.  Convex models are able 
to capture the worst-case scenario due to uncertain-
ties.  They are very efficient when an info-gap situa-
tion arises, i.e. when the availability of data on an 
uncertain parameter is scarce.  A superposition 
method (Ganzerli and Pantelides, 2000) is conven-
iently used to apply the uniform bound convex 
model and obtain the convex structural responses.  
The method is applicable to large structures with 
many members and uncertain parameters (Ganzerli 
and Burkhart 2002; Ganzerli et al., 2003).  Convex 
models can be used in both conventional and opti-
mal design of structures. 

The necessity of setting bounds on the uncertainty 
is a weakness of the method.  To counter this, one 
can create a nested series of convex sets: the longer 
the series and the larger the sets, the larger the un-
certainty.  Robustness is defined to be the greatest 
level of uncertainty at which failure cannot occur.  
Of course, it is advantageous to allow the uncertain-
ties to vary considerably from the nominal value 
without the collapse of the structure (Ben-Haim, 

1996).  However, to tolerate a large uncertainty, it is 
necessary to sacrifice the performance of the design. 
One can think of the performance as the structural 
volume, expressed as a function of the cross-
sectional areas and the load magnitudes.  In optimal 
design terms, we would say that the performance is 
the value of the objective function dependent upon 
the design parameters and the uncertainties.  Design 
curves can be developed to plot the robustness 
against uncertainties versus the structural perform-
ance.  The design curves show the necessary trade-
off in decision-making between the structural cost, 
related to the volume, and the robustness.  The de-
sign curves are a useful tool to the engineer.  The 
decision of where to choose an optimal point on the 
design curve takes place during the design process, 
and it is dependent on the desired robustness for the 
structure. 

This paper considers large trusses, with up to 64 
independent design variables.  Problems involving 
optimization of the structural volume, related to the 
cost, are the focus of the study.  For safety and ser-
viceability, constraints are imposed on member 
stresses and nodal displacements.  A genetic algo-
rithm (GA), coded by the authors of this paper, is 
used to carry out the optimal structural design. 



2 ROBUSTNESS OF STRUCTURES 

In this section, the theory of convex models as ap-
plied to fractional uncertainty is introduced.  Tradi-
tionally, the theory of convex models has been used 
in the optimal design of structures assuming that the 
loads are uncertain by a fraction of their nominal 
value.  Later in this section, it is explained how the 
uncertainty can be allowed to vary without the need 
of confining it to set bounds.  In other words, the ro-
bustness of the structure against several level of un-
certainty is sought. 

When considering fractional uncertainty, the con-
vex model method requires the uncertain parameters 
to be bound within a convex set.  Therefore, the 
loads vary from their nominal value of a fixed per-
centage of uncertainty βn.  Consider the truss of Fig. 
1. 
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Figure 1. 10-bar truss. 
 

Supposing that loads P1 and P2 are allowed to vary 
10% from their nominal value, β1 = β2 = 0.1.  This 
corresponds to the inner convex set represented in 
Fig. 2. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Nested convex sets. 

 
Some definitions are necessary to understand Fig. 

2.  Hereafter, superscript N, U, and L will designate 
the terms nominal, upper, and lower respectively.  
The origin ( NN PP 21 , ) is the point where no uncer-
tainties are present and the loads assume their nomi-
nal values.  The vertexes of the rectangle are the ex-
treme variations of the loads from their nominal 
values.  For example, the upper right corner with co-
ordinates ( UU PP 21 , ) is the point where the loads are 
both increased to their maximum.  Upper and lower 
limits of the kth load can be related to the nominal 
values as follows: 
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Where  
 

• k = number of loads 
 
A numerical example, might clarify further how to 

build the convex set for fractional uncertainties.  
Let’s say that ( NN PP 21 , )= (100 kip, 100 kip) and β1 = 
β2 = 0.1.  The four vertexes of the convex set will 
have coordinates: ( UU PP 21 , ) = (110, 110); ( LU PP 21 , ) 
= (110, 90); ( LL PP 21 , ) = (90, 90); ( UL PP 21 , ) = (90, 
110). 

Once the convex set is defined, the convex models 
need to be implemented.  To this end, a superposi-
tion method will be employed, that allows deriving 
equations for maximizing the structural response in 
terms of stresses and displacements.  Here is how 
the method works.  First, the structure is loaded with 
both P1 and P2 using the load nominal values.  The 
nominal responses are obtained as x( NN PP 21 , ) for the 
nodal displacements and F( NN PP 21 , ) for the internal 
forces.  Then the process is repeated similarly but 
using only one load at the time.  In other words, the 
nominal structural response is obtained loading the 
structure with only P1.  x( NP1 ) and F( NP1 ) are calcu-
lated.  The same is done with P2 obtaining x( NP2 ) 
and F( NP2 ).  Now, superposition can be applied to 
derive the convex structural response as follows: 
 
xi, con = xi( NN PP 21 , ) ± {β1 |xi( NP1 )| + β2 |xi( NP2 )|} (3) 
 
Fj, con = Fj( NN PP 21 , ) ± {β1 |Fj( NP1 )| +β2 |Fj( NP2 )|}(4) 
 
σj, con = Fj, con/Aj               (5) 
 
Where 
 

• i = number of degrees of freedom (varies 
from one to eight for the 10-bar truss) 

• j = number of members (varies from one to 
ten for the 10-bar truss) 

• xi, con and Fj, con are the convex displacements 
and internal forces 
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• xi( NN PP 21 , ) and Fj( NN PP 21 , ) are the nominal 
displacements and internal forces calculated 
loading the structure with both NP1  and NP2  

• |xi( NP1 )| and |Fj( NP1 )| are the absolute values 
of the nominal displacements and internal 
forces calculated loading the structure with 
only NP1  (P2 = 0) 

• |xi( NP2 )| and |Fj( NP2 )| are the absolute values 
of the nominal displacements and internal 
forces calculated loading the structure with 
only NP2  (P1 = 0) 

• β1 and β2 are the percents of uncertainty for 
P1 and P2 respectively. 

• σj, con are the convex stresses, that can be di-
rectly derived by the convex forces simply 
dividing them by the member cross-sectional 
areas (Aj). 

 
In Eq. (3) and (4) the ± sign is in agreement with 

the sign of the first term.  In other words, if 
xi( NN PP 21 , ) and Fj( NN PP 21 , ) are positive the 
plus/minus sign will turn into a plus sign and vice 
versa.  This guarantees that the nominal displace-
ments are always increased when uncertainty is pre-
sent and the worst-case scenario due to the uncertain 
parameters is captured by the equations. 

Once the convex responses are calculated, they 
will be used in lieu of the nominal ones in the struc-
tural design process.  This guarantees that through 
the structural response is maximized accounting for 
the uncertainty in the design parameters. 

It is desirable to study different degrees of uncer-
tainty.  In order to do so, several values of βn should 
be considered.  Recalling that βn is the percent of 
uncertainty, a nested series of convex sets is ob-
tained.  The larger βn, the larger the set, the larger is 
the uncertainty.  These convex sets are represented 
in Fig. 2.  Consider that the level of uncertainty is 
measured by a parameter α̂ .  The robustness ex-
presses the greatest level of uncertainty at which 
failure cannot occur.  Therefore, it is advantageous 
to allow the uncertainties to have a large variation 
from the nominal value without the collapse of the 
structure.  In other words, a large robustness is 
sought (Ben-Haim 2001).  However, to tolerate a 
large uncertainty, it is necessary to sacrifice the per-
formance of the design.  The performance is the 
structural volume that depends upon the cross-
sectional areas and the load magnitudes.  For opti-
mal structural design the performance coincides with 
the value of the objective function.  The critical per-
formance, rc, is the minimum level of performance 
accepted. 

The robustness can be plotted versus the perform-
ance to obtain a design curve, as shown in Fig. 3.  It 
has been demonstrated that the design curve is 
monotonic (Ben-Haim 1996).  This implies that 
there is a trade-off in deciding which point on the 
design curve is the “working point”, i.e., the optimal 

design.  The decision of where to choose the work-
ing point on the design curve takes place during the 
design process, and it is dependent on the desired 
robustness for the structure. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.  The design curve. 

3 STRUCTURAL OPTIMIZATION 

3.1 Traditional optimization methods 
Traditional optimization techniques are calculus 
based (Kirsch, 1981).  In conventional terms, the 
function to be optimized is called “objective func-
tion.”  In optimal truss design, the objective function 
is the volume that is related to the structural cost.  
The volume depends on the member cross-sectional 
areas A and the loads, P.  These are called “design 
parameters.”  The loads here are also the uncertain 
parameters, keeping in mind that they are not deter-
ministic.  Structural optimization is subject to con-
straints.  In order to satisfy safety and serviceability, 
stress and displacement constraints must be im-
posed.  The structural optimization problem can be 
stated as: 
 
minimize V(Aj, Pk) 
such that xi(Aj, Pk) ≤ xi,allowable 
               σj(Aj, Pk) ≤ σj,allowable                               (6) 
 
Where  
 

• As previously stated, i = number of degrees 
of freedom and j = number of members, k = 
number of loads 

• V is the volume expressed as a function of 
the design parameters, i.e. the cross-sectional 
areas (Aj) and the external loads (Pk) 

• xi(Aj, Pk) and σj(Aj, Pk) are the constraints, 
i.e. the displacements and the stresses respec-
tively 
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• xi,allowable and σj,allowable are the allowable val-
ues for constraints xi(Aj, Pk) and σj(Aj, Pk) 

 
In the traditional, calculus-based, optimization 
method the objective function needs to be continu-
ous.  This can create difficulties since not all func-
tions are differentiable.  Moreover, it is convenient 
at times limiting the search space to a discrete array.  
This is especially true in the structural engineering 
field, where sections often come in standard sizes.  
A newer approach, genetic algorithms, overcomes 
these difficulties. 
3.2 Genetic algorithms 
GA mimics the natural selection process (Haupt and 
Haupt, 1998).  An initial “population” of design 
variable values is randomly selected and ranked.  
“Parents” that will mate and reproduce are the ones 
that possess the best characteristics, i.e. display a 
low volume and do not violate the set constraints.  A 
second generation of “offspring” contains the 
“genes” of both parents.  Some random mutation is 
introduced in the genes to avoid a quick conver-
gence of the algorithm to a non-optimal value and to 
introduce values that were not included in the initial 
population.  The second generation, composed of 
parents and offspring, is subjected to the same selec-
tive cycle as the previous generation.  The process is 
continued until the population converges to the op-
timal design.  The method is particularly efficient for 
discrete optimization.  As just stated, this aspect is 
significant for structures, where the member cross-
sectional areas are the design variables and are often 
available in standard sets. 

4 EXAMPLES 

This section presents two numerical examples.  The 
minimal volume for trusses is sought where con-
straints on convex stresses and displacements from 
Eqs. (3-5) are imposed.  The load condition is uncer-
tain and, instead of imposing fixed boundaries, a 
range of uncertainties is considered.  The aim is to 
derive design curves that would fit any level of un-
certainty.  To this end, for each truss, eleven struc-
tural designs were computed.  First, the truss is op-
timized using the nominal loads.  In this case there is 
no uncertainty and the parameters βn of Eqs. (1-5) 
are equal t zero.  The next ten designs are obtained 
increasing the uncertainties of increments of 10 per-
cent.  Graphing the volume versus the uncertainties, 
and plotting these eleven points, a design curve can 
be obtained.  All the loads present on the structure 
are considered to be part of one load condition, and 
they are all increased of the same percentage.  The 
two examples considered include a 10-bar truss and 
a 64-bar truss. 

4.1 10-bar truss 
The 10-bar truss represented in Fig. 1, is often used 
as a benchmark in the literature (Ganzerli and 
Burkhart, 2000).  The truss is made of aluminum, 
and has a Young’s modulus E equal to 10,000 ksi.  
Member stresses cannot exceed 25 ksi for both ten-
sion and compression.  The only exception is mem-
ber with end joints 2-4 that can reach a value of 
stress equal to ± 75 ksi.  The nodal displacements 
are limited to 5 in. 
 
4.2 64-bar truss. 
The 64-bar truss represented in Fig. 4 has 28 nodes 
and 48 degrees of freedom.  This truss is manufac-
tured in aluminum and has a Young’s modulus E 
equal to 10,000 Ksi.  The length of all the horizontal 
and vertical members is 200 in.  In this example, the 
allowable stresses for each member are set as ± 25 
ksi (for both tension and compression).  Constraints 
are also imposed such that the vertical displacement 
at node 1 and the horizontal displacement at node 9 
are less than 10 in.  The nominal values of the loads 
are given in Fig. 4.  This truss was solved as an ex-
ample of optimization using GA by Ghasemi et al. 
(1999).  The example here presented has the same 
geometry and load condition of the one cited but two 
main peculiarities of the example here solved must 
be mentioned.  In this paper, uncertainties are con-
sidered for the load condition, whether Ghasemi et 
al. (1999) have solved the nominal case.  Further-
more, here 64 independent variables are considered.  
Ghasemi et al. (1999) have linked the 64 variables to 
obtain 19 groups of independent variables.  Linking 
the variables is attractive for practical purposes.  In 
structural design, it is more feasible to use a limited 
number of sections for ease of construction and eco-
nomical benefits.  However, the authors of this paper 
are using the 64 independent variables to demon-
strate the power of GA in solving large problems.  
For sake of comparison, the authors of this paper, 
have solved the 64-bar truss as presented by 
Ghasemi et al. (1999) and obtained very close re-
sults.  These are not presented here for brevity. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. 64-bar truss. 
4.3 Results 
Table 1 includes the optimal volumes obtained for 
the 10-bar and 64-bar trusses.  The results are pre-
sented for each percentile of uncertainty considered.  
This is varying from zero uncertainty (βn = 0) to 
100% uncertainty βn = 1. 
 
Table 1. Optimal results. 
Fractional 
uncertainty  

 10-bar truss op-
timal volume 

 64-bar truss op-
timal volume 

βn  in3  in3 
0  15396  25789.6 
0.1  16961.7  29365.9 
0.2  18683.4  35367.2 
0.3  20994.4  39088.6 
0.4  22802.9  46197 
0.5  24625.8  52668 
0.6  25819.1  58142.9 
0.7  27522.1  64114.2 
0.8  29375  70986 
0.9  31304.8  76779.1 
1.0  33003  81549.7 

 
Plotting the minimized volumes for the 10-bar truss 
found in Column 2 of Table 1 versus the uncertain-
ties Figure 5 is obtained.  The 11 points are con-
nected with a line that is the design curve for the 10-
bar truss. Similarly, plotting the volumes in Column 
3 Table 1 versus the uncertainties and connecting the 
dots, the design curve for the 64-bar truss is ob-
tained.  See Fig. 6. 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
Figure 5.  10-bar truss. Design curve. 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 6.  64 bar truss. Design curve. 
 
The design curves for the 10-bar truss and for the 
64-bar truss are approximately straight lines.  This 
means that the volumes grow in linear direct propor-
tion with the load increase.  The reason for this out-
come is that the objective function, the structural 
volume, and the constraints, stresses and displace-
ments, are linear functions of the design variables 
(the member cross-sectional areas).  Deriving this 
result is important.  In fact, the designer could calcu-
late a limited number of points on the curve, maybe 
two or three.  From these few points the all curve 
can be plotted for any level of uncertainty.  The 
working point can then be determined based on con-
siderations of safety, economy, and importance of 
the structure.   
 These curves are significant from a computational 
point of view.  A criticism that optimization often 
receives, is that one can never be sure to have ob-
tained the absolute optimum.  Once a solution is 
reached the doubt remains that it is a local minima.  
Since these curves are straight lines, it is easy to 
check if a volume that is calculated for a certain per-
centage of uncertainty belongs to the curve or not.  If 
the volume falls outside the curve, then the designer 
can investigate if a local minimum has been reached.  
Letting the algorithm run for more generations will 
produce more accurate results.  Therefore, the design 
curves serve as a check to see if a structural design is 
a true minimum or not. 
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5 DISCUSSION AND CONCLUSION 

In this paper, optimal structural design using GA 
was addressed.  Convex models were used to ad-
dress the uncertainties affecting static loads for 
trusses.  Using the superposition method, design 
curves were derived that fit any level of uncertainty.  
Two important considerations need to be stated.  The 
design curves are a plot of a series of optimal struc-
tural designs obtained augmenting the fractional un-
certainties by equal increments, e.g. 0% nominal 
case, 10 % uncertainty, 20% uncertainty, and so on.  
The authors did not identify a working point on the 
curves with the intent of leaving this decision for the 
engineer to make.  Recall from paragraph 2, that the 
working point is the optimum compromise between 
the cost and the tolerance to uncertainty that are in-
versely proportional.  The curves are intended as de-
sign tools and the level of robustness against uncer-
tainties sought is problem dependent.  Think, for 
example, at the importance of a structure.  A higher 
level of robustness is desirable for a public assembly 
place than for a warehouse. 

The robustness of the structure is here intended as 
directly proportional to the uncertainty.  In other 
words, the structural design problem was formulated 
assigning a level of uncertainty and calculating the 
minimum volume that the structure can have to sat-
isfy that uncertainty.  The coefficient α that meas-
ures robustness corresponds to the coefficients β1.  If 
we consider, for example, an uncertainty of 10 %, 
the reliability of the structure is the coefficient β1 = 
0.1.  Another approach to robustness is to seek the 
performance of a design that is least sensitive to the 
variability of uncertain variables (Au et al., 2003).  
In the latter case, a fix volume is chosen maximizing 
the tolerance to the uncertain parameters.  The coef-
ficients βn are not known a priori, but are calculated 
as objective functions during the optimization proc-
ess.  The authors of this paper have not chosen the 
second approach because, although a better struc-
tural performance could be obtained, this application 
is computationally expensive.  Au et al. (2003) have 
used unsatisfactory functions to reach this goal.  The 
method could be applied to derive design curves.  
However, using unsatisfactory functions requires 
performing a nested optimization.  Even with using 
decomposition, that uncouples the nested optimiza-
tion, the method is computationally expensive.  The 
superposition method is attractive for its ease of im-
plementation and guarantees the robustness against 
the uncertainty under consideration. 

The authors are working towards developing de-
sign curves that allow different load conditions to be 
present on the structure simultaneously.  The next 
step is to consider separate load conditions for which 
the uncertainty can vary independently from each 
other. 

In conclusion, the superposition method has been 
used to derive design curves that fit any level of un-
certainty.  Convex models are an attractive alterna-
tive to the probabilistic method to deal with uncer-
tainties.  This paper explored the possibility of 
letting the uncertainties vary.  This is a step forward 
with respect to the traditional convex model ap-
proach that dealt with fractional uncertainty. 

6 APPENDIX 

A Table for conversion factors from US to SI units 
is given below for the units used in this paper. 

 
Table 2.  Conversion factors. 
inches (in) millimeters (mm) 25.4 
feet (ft) meters (m) 0.305 
pound forcea (lb) Newtons  4.448 
Pounds per sq inb 
(psi) 

Newtons per sq m 
(N/m2) 

6895 

aKips equal kilo-pounds = 1,000 lb 
bKsi equal kilo-pounds per square in = 1,000 psi 
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