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ABSTRACT: The aim of this paper is to obtain the optimal design of trusses under uncertain static loads. 
Genetic algorithms are used to carry out the structural optimization and convex models are employed to han-
dle the uncertainties.  A study of the efficiency of genetic algorithms is performed.  Using the uniform bound 
convex model affects the computational speed of the algorithm.  In fact, it requires as many analyses as the 
number of uncertainties.  However, it is shown that the problem still can be expressed as a polynomial time 
algorithm.  Genetic algorithms prove to be most efficient when the initial population is chosen making an
educated guess.  A preliminary design is carried out first using integers and then switching to floating points.
Finally, the efficiency of genetic algorithms is clear when using integer numbers for which convergence is 
more rapid than with real numbers. 

 
 

1 INTRODUCTION 

The focus of this paper is optimal design of trusses 
under uncertain load magnitudes.  Convex models 
are implemented to handle the uncertain parameters 
and genetic algorithms (GA) are used for minimiz-
ing the structural volume. 

Convex models have been proposed by Ben-
Haim and Elishakoff (1990).  They are a nonprob-
abilistic method and, together with probability and 
fuzzy sets, they compose the “uncertainty triangle” 
(Elishakoff, 1995).  Since their discovery, convex 
models have been employed to address different 
kinds of uncertainties.  In structural design, convex 
models have been implemented using the anti-
optimization technique (Elishakoff. et. al, 1994).  At 
each structural optimization cycle in order to mini-
mize the structural cost, a complete optimal routine 
needs to be nested to maximize the load effects on 
the structure.  This process is computationally quite 
expensive.  In addition, it requires the constraints to 
be written as an explicit function of the design vari-
ables.  A superposition method has been proposed 
by Ganzerli and Pantelides (2000).  This method al-
lows accounting for a large number of uncertainties 
and structures with many members.  The superposi-
tion method is used in this paper.  Ben-Haim et al. 
(1996) have shown the efficiency of convex models 

in identifying the worst-case-scenario due to uncer-
tainties.  In fact, for structures subjected to uncertain 
static loads, the maximum structural response due to 
the uncertain parameters cannot be identified simply 
by increasing each of the parameters to their maxi-
mum value.  However, the convex model design 
proves resistant in terms of constraint violations.  
Recently, convex models have proven efficient in 
the study of thin-walled stiffened composite panels 
that are highly sensitive to geometrical imperfec-
tions (Elseifi et al., 1998).  In this paper, a compari-
son between the convex models and a Monte Carlo 
simulation led to similar results but with an effort 
and cost reduction in favor of the convex models.  
Recently (Tonon et al., 2001) hybrid systems that 
combine the three methods available to deal with 
uncertainties, consisting of probability, fuzzy sets, 
and convex models, have been explored.   

Traditional optimization techniques encompass: 
(1) mathematical programming, (2) optimality crite-
ria, (3) approximation methods, and (4) steepest de-
scent methods.  Optimal structural design has been 
implemented for many years (Kirsh, 1981).  In the 
traditional optimization, the domain is searched us-
ing the gradient of the objective function.  A limita-
tion arises when the function is not continuous and it 
is not possible to calculate its gradient.  In the 1960s 
and 1970s Genetic Algorithms (GA) were conceived 
and developed by John Holland (1975).  GA gained 
popularity after David Goldberg (1989), one of Hol-
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land’s students, succeeded in solving a complicated 
problem presented in his dissertation.  GA for opti-
mal design of trusses have been extensively ex-
plored.  In recent years, Rajeev and Krishnamoorthy 
(1997) have experimented with GA in the optimal 
design of trusses, and Ghasemi et al (1999) have 
demonstrated the suitability of GA to address large 
trusses with many uncertain variables.  Optimization 
of large trusses using traditional algorithms was pre-
sented by Schemit, L.A. and Lai, Y.C. (1994).  
However, the advantage of GA consists in the possi-
bility of considering discrete variables. 

Only two publications exist that combine convex 
models with GA.  Cho, M., and Rhee, S.Y. (2001) 
have studied the layup optimization for free edge 
strength utilizing GA for the optimal design and 
convex models to deal with uncertainties.  Ganzerli 
and Burkhart (2002) have implemented GACON, a 
GA based optimization routine combined with the 
uniform bound convex model to deal with load un-
certainties. 

2 CONVEX MODELS OF UNCERTAINTY 

In this paper convex models are employed in the 
structural design of trusses subject to an uncertain 
static load condition.  The uniform bound convex 
model was chosen because of its easy implementa-
tion.  To illustrate its application a simple structure 
in Fig. 1 is considered. 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1.  Three-bar truss. 
 

The simple three bar truss has two degrees of 
freedom (x1 and x2) and is loaded by two static loads 
(P1 and P2).  The latter represent the uncertain pa-
rameters.  For the convex models to be applicable 
the uncertainties need to be bound within a convex 
set C.  This can be represented as follows: 
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The convex set can be represented graphically by 

a rectangle, if only two uncertainties are present 
(Fig. 2). 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.  The convex domain. 
 

The uncertainties are allowed to vary within the 
convex set.  However, for a problem such as the one 
addressed in this paper, only the four corners of the 
convex model need to be considered.  In fact, it has 
been demonstrated that the maximum effect due to 
the uncertainties should be found on the convex hull, 
in this case the perimeter.  In particular, when the 
problem presents a linear relationship between the 
uncertain loads and the structural response (in terms 
of displacements and stresses) the maximum effect 
due to the uncertainty should be searched on the four 
corners of the rectangle (Elishakoff et al., 1994). 

The convex structural response can be conven-
iently found through a superposition method.  The 
convex portion is added to the nominal values of the 
structural response (displacements, forces and 
stresses) calculated when all the given nominal loads 
are acting on the structure.  The latter consists of 
summing the nominal structural responses calculated 
with one load at a time and multiplying them by the 
per-cent of uncertainty for that load.  The resulting 
expressions for the convex displacement and force 
vectors are: 
 
xcon = x( nP1 , nP2 ) ± {β1 |x( n

1P )| + β2 |x( nP2 )|} (3) 
  
Fcon = F( nP1 , nP2 ) ± {β1 |F( n

1P )| + β2 |F( nP2 )|} (4) 
 
where  
• xcon and Fcon are the convex displacements and in-
ternal forces 
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• x( n
1P , nP2 ) and F( n

1P , nP2 ) are the nominal dis-
placements and internal forces calculated loading the 
structure with both n

1P  and nP2 ; 
• |x( n

1P )| and |F( n
1P )| are the absolute values of the 

nominal displacements and internal forces calculated 
loading the structure with only n

1P  (P2 = 0); 
• |x( nP2 )| and |F( nP2 )| are the absolute values of the 
nominal displacements and internal forces calculated 
loading the structure with only nP2  (P1 = 0); 
• β1 and β2 are the percent of uncertainty of P1 and 
P2 respectively. 

In Eq. (3) the ± sign is in agreement with the sign 
of the first term.  In other words, if x( nP1 , nP2 ) are 
positive the plus/minus sign will turn into a plus sign 
and vice versa.  This guarantees that the nominal 
displacements are always increased when uncer-
tainty is present and the worst case scenario due to 
the uncertain parameters is captured by the equa-
tions. 

Convex stresses can be obtained directly from the 
convex internal forces just by dividing the latter by 
the member cross sectional area (Wang, 1986). 

In conclusion, to account for uncertainties in the 
structural design, it is sufficient to substitute the 
convex responses to the nominal ones in the struc-
tural analysis routine.  One important note is that al-
though the uniform bound convex model is imple-
mented here jointly with genetic algorithms, it can 
also be introduced in the conventional (non optimal) 
design of structures. 

3 GENETIC ALGORITHMS 

GA is an optimization method that mimics the natu-
ral selection process (Haupt and Haupt, 1998).  An 
initial population of individuals is randomly gener-
ated and ranked based on desired characteristics.  
Only the fittest individuals are selected to reproduce.  
Fitness is evaluated through a “cost function,” the 
traditional name of the function to be optimized.  
For a constrained optimization, it is necessary to ap-
ply the constraints in terms of penalty functions to 
count against the cost of the individuals.  In this 
way, an individual that violates the constraints will 
be ranked among the subset of the population that 
will not reproduce.  Once the fittest individuals are 
selected, the mating process begins.  Individuals 
have to be paired.  A crossover operator needs to be 
implemented to establish which genes will be passed 
from the parents to the offspring.  Once the process 
of reproduction is completed, the number of indi-
viduals will be the same as the one in the initial 
population.  The percentage of the population re-
tained for reproduction, and the number of offspring 
generated are design parameters.  An important ele-
ment is mutation.  The offspring will contain genes 
inherited from the parents.  Mutation guarantees that 

new genes are introduced in the gene 
pool.  This ensures that some alleles (gene values) 
will be introduced that were not randomly generated 
at the beginning.  The optimization process is sensi-
tive to the mutation rate.  If mutation is too fast the 
algorithm might quickly converge to a local optimal 
value.  Mutation also affects the speed of conver-
gence. 

For the design problem considered in this paper 
the aim is to optimize trusses for cost (identified 
with the structural volume).  The population is com-
posed of trusses that represent the individuals.  The 
ranking is based on cost and on penalty functions as-
signed to individuals (trusses) that violate the con-
straints.  Stress and displacement constraints are ac-
counted for.  The design variables are the truss 
members cross sectional areas that will play the role 
of the genes.  Their values are the alleles.   

4 EXAMPLES 

In this section three examples are presented.  The 
trusses are of increasing complexity in terms of the 
number of members and nodes.  The static loads are 
considered uncertain in magnitude and the uniform 
bound convex model is implemented.  The scope of 
the optimal design is to minimize the structural vol-
ume subject to stress and displacement constraints.  
The design variables are the member cross-sectional 
areas. 
4.1 10-bar truss 
The following 10-bar truss (Fig. 3) is widely repre-
sented in the literature on optimization (Ganzerli and 
Burkhart, 2000). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. 10-bar truss. 
 
The truss is aluminum (E = 10,000 Ksi).  The uncer-
tain loads all vary by 10 percent from their nominal 
values, represented in the Fig. 3.  Constraints are 
imposed on stresses that are limited, for both tension 
and compression to a value of 25 Ksi for all mem-
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bers but member 2-4 for which the maximum stress 
is set at 75 Ksi.  The displacements are limited to 5 
in. 
4.2 19-bar truss 
Figure 4 represents a 19-bar truss with 11 nodes and 
19 degrees of freedom.  E = 10,000 Ksi.  The verti-
cal loads have an uncertainty of 20 percent and the 
horizontal loads have an uncertainty of 10 percent.  
The nominal values for the loads are given in Fig. 4.  
The constraints for the optimal design are imposed 
on stresses so that they can never exceed 25 Ksi for 
tension and compression, and on the horizontal dis-
placement at node 11 that is limited to 3 in. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. 19-bar truss. 
4.3 64-bar truss. 
Figure 5 represents a 64-bar truss with 28 nodes and 
48 degrees of freedom. The aluminum truss has a 
Young’s modulus equal to 10,000 Ksi.  The length 
of all the horizontal and vertical members is 200 in.  
The load magnitudes (for which the nominal values 
are given in Fig. 5) are uncertain and their values are 
bounded as the convex models require.  The 70 Kips 
loads have an uncertainty of 20 percent and the other 
loads have an uncertainty of 10 percent with respect 
to their nominal values.  In this example, the allow-
able stresses for each member are set as ± 25 Ksi 
(for both tension and compression).  Constraints are 
also imposed such that the vertical displacement at 
node 1 and the horizontal displacement at node 9 are 
less than 10 in. 

This truss is presented in the literature with only 
deterministic loads.  Ghasemi et al. (1999) reduce 
the variables (the member cross-sectional areas) to 
19 by linking them.  In this paper the 64 design vari-
ables are independent of each other. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. 64-bar truss. 
4.4 Results 
The optimal volumes for the three trusses described 
above are given in Table 1.  The results are pre-
sented for both the integer optimization and the 
floating-points optimal design. 
 
Table 1. Optimal results. 
Truss  Optimal volume  

(integers) 
 Optimal volume 

(floating-points) 
  in2  in2 
10-bar  2.14 x 104  1.95 x104 
19-bar  4.31 x 104  4.25 x 104 
64-bar  5.19 x 104  4.07 x 104 

 
As shown, GTO (Genetic Truss Optimizer), the 

code developed for this research, was successful in 
solving the posed problem of optimizing trusses sub-
ject to uncertain static loads.  The program combines 
the GA routine with the structural analysis incorpo-
rating the uniform bound convex model.  GTO was 
implemented in the C++ programming language and 
executed on a small Hewlett-Packard main frame 
running unix.  Both the integer and floating point re-
sults are presented.  The integer results are useful for 
two reasons.  For a preliminary design, one could be 
satisfied with just an estimate of the sizes given by 
the integer variables.  Additionally, the program 
converges faster if an educated guess is made and 
the initial population to obtain the floating–point so-
lution is chosen based on the integer results. 

A more detailed discussion on the benefits on us-
ing convex models and the robustness of a convex 
model design with respect to the uncertainties can be 
found in (Ganzerli and Pantelides, 2000).  The aim 
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of this paper is to analyze the algorithm itself and 
the feasibility of the implementation of the uniform 
bound convex model coupled with GA.  From Eqs. 
(3) and (4) it can be understood how the computa-
tional effort is increased when using the convex 
model.  In fact, the uniform bound convex model re-
quires as many structural analyses as the number of 
uncertainties present.  This important aspect will be 
addressed in the following section. 

5 DISCUSSION AND FURTHER RESEARCH 

A danger in using a computer to find an optimal or 
nearly optimal solution to a complex problem is that 
the problem under discussion might not yield a solu-
tion in reasonable time.  The function associated 
with the cost of computing such problems grows ex-
ponentially relative to the size of the input parame-
ters.  The best known of these is the traveling sales 
person problem.  Given a collection of cities, num-
bered 1 through n - 1, along with the distances be-
tween any two cities, the problem for the traveling 
sales person is to find a route of minimum cost.  
This problem can be represented with an n vertex 
graph.  One vertex is the starting point, the others 
are the cities on the tour.  The optimal solution is the 
collection of edges that, in sum, produces the short-
est tour.  Clearly, this is a permutation problem.  
There are n! candidate solutions.  Somewhat surpris-
ingly, an optimal solution cannot be found in rea-
sonable time. 

What is meant by reasonable time?  Korsh  
(1986) offers a benchmark.  Assume a computer that 
can carry out 106 basic operations (ops) per second.   
These include arithmetic operations, comparison, 
memory retrieval and so forth.  Of course, these dif-
fer in cost from machine to machine, an objection 
that will be faced shortly.  They also differ in cost 
among themselves.  Since what is really being 
sought is an estimate of how bad things can get, as-
sume that the hypothetical machine can carry out a 
million of the most expensive ops per second. If the 
computer were to run day and night for a year, it will 
have executed fewer than 1014 ops.   Korsh suggests 
using this as a benchmark.  Any solution requiring 
more computing power than a year’s worth, is not 
reasonable.  Somewhat surprisingly, 17! exceeds 
1014.  By this measure of feasibility, the computation 
of the optimal seventeen-city tour is not feasible.  
One obvious objection is to find a faster computer, 
one that can carry out, say 109 ops per second.   But 
this only increases the number of cities in the tour by 
two.   The solution, if there is one, is not to be found 
in hardware. 

Clearly what is important here is not the machine 
but the algorithm itself.  Algorithms can be analyzed 
in two ways: a posteriori and a priori (Horowitz & 

Sahni, 1986).  In an a posteriori analy-
sis, the researcher collects run-time statistics about 
an algorithm as it executes on problems of varying 
sizes.  In this analysis, the kind of machine makes a 
great deal of difference.  But an a posteriori analysis 
makes sense only if it can be demonstrated in ad-
vance that the problem at hand will yield a solution 
in reasonable time.   Thus, the problem of optimiz-
ing a truss using the convex model and a genetic al-
gorithm is more fundamental than that of collecting 
run-time statistics.  It is crucial to know if the ap-
proach to the problem is feasible by the definition.  
If it is not, then the next step is to determine if it 
falls into a class of problems, the NP-complete prob-
lems, for which there is no known polynomial time 
solution.  The traveling sales person, in fact, is a 
member of this class (Garey & Johnson, 1979).   Its 
membership was determined a priori, exactly the 
method that will be brought to bear on the truss 
problem. The method consists in finding a function 
on parameters from the problem description that 
provides an upper bound to the computing time of 
the algorithm. 

Before proceeding, it is necessary to define, in-
formally, two terms: polynomial time and exponen-
tial time algorithms.  Suppose n represents some de-
scription of a problem's complexity.  In the case of 
the traveling sales persons, this would be the number 
of cities on the tour.   In the case of optimizing 
trusses with genetic algorithms there are several 
such parameters, most obviously the number of 
members, the number of nodes, the population size, 
and the number of generations that the algorithm 
must run through until it converges on a nearly op-
timal truss.  Keeping things simple for the moment, 
a polynomial time algorithm is one whose run-time 
is bounded above by a polynomial of the form nm.  
Notice that there is no m such that nm forms an up-
per bound for 2n.  An informal way of saying this is 
that for sufficiently large n, 2n > nm.   We will call an 
algorithm exponential time if its a priori computing 
time is bounded below by 2n.   Not only does an ex-
ponential time algorithm increase more rapidly than 
a polynomial time algorithm, for large n the differ-
ence is dramatic and renders exponential time algo-
rithms, by the definition, infeasible. 

The good news is that the a priori run-time of the 
algorithm used to generate the results for this paper 
appears to be in the class of polynomial time algo-
rithms.  The cautious “appears to be” is used be-
cause the run-time depends functionally on the num-
ber of generations that the algorithm must produce.  
At this point in the research, several successful 
analyses of increasingly complex trusses have been 
made using a genetic algorithm and the convex 
model.  If further research shows that the number of 
required generations increases exponentially with 
the complexity of the truss, another approach will be 
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necessary.  If on the other hand, the relationship can 
be shown to be one of polynomial time, as, indeed, it 
appears to be, the next task will be to refine the algo-
rithm. 

One possibility is to use explicit parallelism.  For 
each generation, each of the trusses must undergo a 
structural analysis.  Since these analyses are inde-
pendent of one another, they are natural candidates 
for parallel programming.  Now that machines run-
ning Linux may be inexpensively networked into 
clusters, such a solution is no longer the sole prov-
ince of super-computing labs.  Another is to explore 
the parallelism inherent in the individual computa-
tions themselves, through the use concurrent threads.  
This is a method used widely by makers of graphical 
user interfaces.  Though the computational-intensive 
nature of structural analysis does not appear to offer 
the opportunity that graphical programming does to 
“steal” machine cycles, it is still an avenue worth in-
vestigating. 

Now for the analysis.   Any a priori analysis is, 
by its nature, a very rough measure of run-time effi-
ciency.   But since the task is only to decide if the 
genetic algorithm approach is feasible, it works quite 
nicely.  The reason is that an a priori analysis will 
provide a worst-case measure.  If it is possible to 
isolate the parameters on which the run-time of the 
algorithm depends, it can show that the computing 
time cannot exceed a function on those parameters.  
Computer programs spend most of their time in 
loops, that is, cycling through the same kind of cal-
culation again and again.  In the case of structural 
analysis using the convex model, one of the signifi-
cant computing costs is matrix multiplication.  It is 
well-known that the cost of matrix multiplication in-
creases in proportion n3, where n is the size of an n 
X n matrix.  A significant cost of the genetic portion 
of the algorithm is the necessity of sorting the popu-
lation of trusses at each generation.  The rather slug-
gish, but simple, selection sort, is used in GTO.   
The run-time of selection sort can be shown to in-
crease in proportion to the square of the number of 
items being sorted. Both of these algorithms, require 
what are known as nested loops, the first a loop 
within a loop within a loop, the second a loop within 
a loop.  We have isolated several parameters that 
control loops.  Using these, we have developed func-
tions that describe the worst-case computing time. 

One objection to this line of analysis, is that the 
computation that is performed within each of the 
many loops in the program varies widely.  Some will 
perform one basic operation.  Others will perform an 
integer multiple of a basic operation.   Now, it is 
surely the case that among the loops, one will per-
form a collection of operations that are more expen-
sive than the other loops.  Call this collection B.  If 
B is substituted for the cost of the operations in the 
other loops, the resulting function will have a value 

greater the actual cost of the functions.   
If the function describing the algorithm can still be 
shown to be a polynomial time function, especially 
if it can be shown to be of relatively low order, then 
it is, at least theoretically, feasible. 

Here, then, are the functions that describe GTO: 
Let: 
A = the total cost of running the genetic algorithm 
T = the total cost of structural analysis per truss 
Cn = the nominal cost for analyzing a single truss 
Cc = the additional cost of analyzing a single truss 
using the convex model 
P = the population size 
G = the number of generations that the algorithm 
must produce and analyze 
M = the number of members in the truss 
N = the number of nodes in the truss 
Then, 
 
A = (G + 1) (2P2 + 4PM + PT) + GP (5) 
 
T = Cn +  Cc (6) 
 
Cn = 8N3 – 24N2 + 38N – 6M2 + 9M – 68NM + 4 
NM2 + 4 MN2 – 18 (7) 
 
Cc = 32N4 – 88N3 + 96N2 – 42N + M – 14NM – 48 
N2M + 48N3M + 8N2M2 – 6NM2 (8) 

 
These equations were obtained by a direct analy-

sis of the algorithm that produced the results in this 
paper.  The cost, here, is B, some integer multiple of 
the time it takes to perform a basic operation.   
Though these equations should be taken with a grain 
of salt, they do give some indication of how the run 
time of the algorithm will increase with an increas-
ingly complex truss. 

Given some constant, K, and sufficiently large N 
and M, it can be shown that: 
 
T ≤ KN3(N + M) (9) 
 

This is simply an informal statement of O-
notation widely used in a priori analyses of com-
puter algorithms (Horowitz and Sahni, 1986).   Al-
though, structural analysis using the convex model is 
very expensive computationally, it is still bounded 
above by 2N and, so by the definition, a polynomial 
time algorithm.  There is evidence to believe that G, 
the number of generations, does not increase expo-
nentially with problem size.  In fact, genetic algo-
rithms were developed for just this purpose—to re-
duce the time necessary to find an a solution to 
certain problems from exponential to polynomial 
time.  The price, of course, is that the solution is 
good enough, though not optimal.  Only further re-
search will uncover whether this is the case.   If the 
hypothesis turns out to be correct, the algorithm--the 



 

 

GAN262

7

structural analysis component and the genetic com-
ponent—will improve with tighter programming, 
use of parallelism, and more investigation into the 
relationship between mutation factor, convergence 
percentage, and population size. 

6 CONCLUSIONS 

This paper has explored the use of the uniform 
bound convex model for studying uncertain static 
loads and the genetic optimal design of trusses.  Im-
plementing the uniform bound convex model in-
creases the computational effort needed since, for 
each truss, it is required to perform as many struc-
tural analyses as the uncertain parameters present.  
Three examples of increasing complexity are solved 
and the GTO (Genetic Truss Optimizer) program 
developed for this research proves efficient in reach-
ing a viable solution.  The algorithm can produce 
both integer and floating-points results.  The advan-
tage in considering integer variables lies in being 
able to compute preliminary sizes for an initial de-
sign.  Furthermore, the algorithm converges faster to 
an optimal solution using floating-points when the 
integer results are used as initial variables. 

The a priori analysis of the GTO is performed to 
estimate the parameters on which the run-time de-
pends.  Using these parameters the functions were 
developed that describe the worst-case computing 
time.  It is shown that, although the convex design is 
computationally expensive, it can still be considered 
a polynomial time algorithm and it will not increase 
exponentially with problem size. 

7 APPENDIX 

A Table for conversion factors from US to SI units 
is given below for the units used in this paper. 

 
Table 2.  Conversion factors. 
inches (in) millimeters (mm) 25.4 
feet (ft) meters (m) 0.305 
pound forcea (lb) Newtons  4.448 
Pounds per sq inb 
(psi) 

Newtons per sq m 
(N/m2) 

6895 

aKips equal kilo-pounds = 1,000 lb 
bKsi equal kilo-pounds per square in = 1,000 psi 
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