Genetic Algorithms as a Polynomial Time Alternative for Exponentially Complex Engineering and Business Problems

Abstract: This paper introduces genetic algorithms and shows how they can be used in structural engineering. It analyzes the behavior of the traveling salesperson problem and shows that genetic algorithms present an attractive approach to difficult operations research problems.

Key Words: genetic algorithms, evolutionary computing, convex models, optimal design, trusses, uncertainty, traveling salesperson

Paul De Palma
Department of Mathematics and Computer Science
Gonzaga University
Spokane, WA 99258-2615
depalma@gonzaga.edu
fax: 509-323-5718
Paul De Palma is Associate Professor of Mathematics and Computer Science. His research interests include genetic algorithms and artificial intelligence.

Sara Ganzerli
Department of Civil Engineering
Gonzaga University
Sara Ganzerli is Assistant Professor of Mathematics and Computer Science. Her research interests include optimal structural design, uncertainty using convex models, and earthquake engineering.

Shannon Overbay
Department of Mathematics and Computer Science
Gonzaga University
Shannon Overbay is Assistant Professor of Mathematics and Computer Science. Her research interests include book embeddings of graphs.

Aaron Brown
Department of Mathematics and Computer Science
Gonzaga University
Aaron Brown is a student and research assistant in the Department of Mathematics and Computer Science.
Peter Stackle
Department of Mathematics and Computer Science
Gonzaga University
Peter Stackle is a student and research assistant in the Department of Mathematics and Computer Science