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Abstract—Many scientific workflow systems are built on
dataflow-based models of computation in which data drives
the execution of workflow components. An advantage of using
dataflow models is their straightforward semantics (which in-
cludes support for branching, merging, and looping) and their
ability to concurrently execute workflow steps. However, for
many data-intensive workflows the dataflow model often re-
quires data buffering. Current systems largely perform buffering
through in-memory queues which can lead to buffer overflow
and performance degradation as queues reach capacity (e.g.,
because of paging). We describe an alternative framework that
leverages external storage to implement buffers (which we refer
to as persistent queues) within data-intensive scientific workflows.
Our framework can easily be used with different underlying
storage technologies, and we consider and evaluate three distinct
approaches: a traditional relational database implementation, a
non-relational implementation designed for fast reads and writes,
and a specialized approach that can further reduce external
buffering overhead. In addition, the use of persistent queues can
provide detailed provenance information ‘“for free” by capturing
the input and output information of each workflow component
during workflow execution. Although many systems provide such
provenance information, we show how this information can be
captured both efficiently and can be used to improve overall
workflow performance through persistent queues.

I. INTRODUCTION

Scientific workflows from a wide range of disciplines are
often data-intensive, requiring many different tools working
together to manipulate, analyze, and visualize large data
sets. For example, workflows for earth and environmental
science [1], molecular biology [2], [3], phylogenetics [4],
image processing [5]-[7], and financial analyses [8] often
involve the use of multiple tools to combine different datasets
(often ranging from tabular data to streaming data), perform
one or more statistical or specialized analyses, and then
generate and display visualizations of analytical results. In
such workflows, workflow components (that wrap and call
external applications) often receive and produce large numbers
of data “tokens” containing either fine-grain or course-grain
objects (e.g., numerical data, gene sequences, images, or more
complex structures such as phylogenetic trees [2], [7]).

Workflow systems that support data-intensive analyses (e.g.,
[9]-[12]) are often based on dataflow models of computation
[13]. Dataflow has a number of advantages for designing and
executing data-intensive workflows, including a simple and
formal semantics, and the ability to leverage a variety of
constructs such as branching, merging, conditional execution,
and iteration (e.g., to implement while loops or fixed-point

computations [4]). Another significant advantage of dataflow
is its inherent ability to allow data tokens to be streamed
between components that are executed concurrently (so called
“pipeline parallelism”). Similar to data parallelism [3], [14],
[15], pipeline parallelism can also provide speedup of scientific
workflows by allowing different components within a pipeline
to be executed concurrently. Pipeline parallelism, however, re-
quires token buffering, and current workflow systems support-
ing pipeline parallelism typically employ in-memory buffering
approaches. In-memory buffering can lead to performance
problems including running out of memory (buffer “overflow”)
and slow-down caused by paging.

For example, consider the following simple “workflow”
with two components A and B connected by a single dataflow
channel. As shown, A and B may also be connected to
“upstream” and “downstream” components, respectively. In
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this example, the set of invocations of A produce an overall
sequence xi,%2,...,x, of data tokens that are consumed
by invocations of B. If each invocation of A produces one
data token, each invocation of B consumes one token, and
A and B execute in the same amount of time, then no
additional buffering is required on the channel (i.e., on the
“pipe” connecting A to B). In this case, each invocation of
A produces a data token that is then immediately used by an
invocation of B. Note that as B executes, A can execute again
concurrently, producing the next data token for the subsequent
invocation of B. This concurrency decreases overall execution
time of the workflow since A does not have to wait until B
finishes its execution. However, if B is slower than A (or
alternatively, if an invocation of A produces more tokens than
B consumes in a single invocation), then data passed on the
channel must be buffered. For instance, if A is twice as fast
as B, two invocations of A can occur for each invocation
of B, which means two data tokens are produced by A for
each invocation of B. In this case, a buffer (implemented as
a queue) must be used to hold these “extra” tokens produced
by A.

As shown in Fig. 1, the first invocation of A (denoted A;)
produces a token x1, which is read by B; (the first invocation
of B). While B, executes, two invocations Ay and A3z of A
occur, producing data tokens zo and x3, respectively, which



Fig. 1. Workflow trace showing pipeline parallelism and buffering, where
the size of the buffer for B increases over time and, in general, without a
fixed bound.

are stored in the channel’s queue. The first of these, x5 is then
read by the second invocation of B, during which two more
invocations of A occur, increasing the buffer size needed by
one token. Thus, as the workflow executes, the queue used
for buffering the channel between A and B continues to grow
with time.

Even in this simple case we can quickly run into memory
problems, e.g., if the size of data tokens output by A is
large, if A and B are executed many times, or if there are a
large number of channels within the workfow (each of which
often occur in data-intensive workflows [4], [9], [14]). Thus,
using in-memory queues for buffering, we can quickly reach
memory limitations (and corresponding performance issues)
or worse, we may run out of memory altogether causing the
entire workflow to halt.

In this paper, we propose a set of strategies for leveraging
external storage to implement channel buffers in scientific
workflows. Our goal is twofold: (i) we want to avoid the above
issues with in-memory queues while reducing the amount
of overhead required to use external storage for buffering;
and (ii) as a by-product of external buffering, we want to
use these “persistent queues” to efficiently record detailed
provenance information on the inputs and outputs of each
component invocation. Although many systems provide such
provenance information (e.g., [4], [10], [12]), we show how
this information can be captured efficiently using the external
buffering approaches presented here, especially compared to
the conventional approaches employed within many workflow
systems. Specifically, we show that pipeline parallelism can
provide performance increases over sequential scheduling, that
external buffering overcomes issues with in-memory buffering,
and that traditional approaches for provenance storage (based
on relational database technologies) introduce significant over-
head within data-intensive workflows that can be reduced by
our framework and alternative implementations presented here.

The rest of this paper is organized as follows. In Sec. II
we describe preliminaries and related work with respect to
dataflow process networks and their common scheduling and
buffering approaches. In Sec. III we present our framework for
enabling persistent queues within scientific workflow systems
(based on the process network model of computation). In

Sec. IV we describe three different implementations of the
framework presented in Sec. III, which include a standard
relational database approach, an approach based on MongoDB
[16] for supporting fast reads and writes from persistent
queues, and a simple, specialized file-based approach for
leveraging sequential reads and writes. In Sec. IV we also
describe our initial experimental evaluation of the framework
and the different implementation approaches we consider. In
Sec. V we summarize our contributions and briefly discuss
future work.

II. PRELIMINARIES AND RELATED WORK

Dataflow process networks. In this paper, we adopt process
networks [13] as a model of computation for representing
dataflow-oriented workflow systems. Process networks form
the basis of the dataflow models used within Kepler [11],
and are quite general in nature: a process network is a set of
processes (also called actors) that execute either sequentially
or in parallel, and are connected by first-in, first-out (FIFO)
communication channels to form a network. Actors produce
data elements (called fokens) and send them along communi-
cation channels, where they are consumed by the destination
actor. Each actor can have zero or more input and output
channels, and actors in a workflow may only communicate
through these channels. When executed in parallel, each actor
runs within a separate thread, placing data onto its output
channels (via a put operation) and reading data from its
input channels (via a get operation). If an actor attempts to
get data from an input channel that is empty, it is blocked
until data is placed on the channel by the corresponding
upstream actor. It is typical to view channels as token streams
(or token sequences) in which actors represent functions that
map input streams to output streams.! A key property of
process networks is that the number of tokens produced and
their values are determined by the definition of the actors
and the structure of the process network, and not by the
specific scheduling of individual actors [13] (assuming the
basic channel dependencies of the network are maintained).
This means that a workflow modeled as a process network will
produce the same results regardless of whether it is executed
sequentially (i.e., one actor at-a-time) or in parallel.

Scheduling. There are two standard types of scheduling ap-
proaches used in process networks. In data-driven (or “ea-
ger”) execution, each actor runs in a separate thread (and
thus in parallel), and each actor executes (or is invoked) as
soon as a sufficient number of data tokens become available.
This approach provides the maximum (pipeline) parallelism
possible within the network since each actor executes as soon
as possible. However, data-driven scheduling can also result
in workflow executions requiring unbounded queues (as in
Fig. 1), in which no guaranteed maximum queue size exists
for all possible runs of the workflow. In demand-driven (or
“lazy”) execution, the number of tokens to buffer can be

lMany workflow systems (e.g., [4], [10]) support incremental, streaming
computation in this way, often using explicit lists or sequences of tokens.



reduced by deferring the execution of an actor until its output
is needed by another actor. Demand driven schedules work by
sequentially “pulling” data through the workflow: the last actor
is activated first, which causes it to request tokens on its input
channels; this activates the corresponding upstream actors,
which causes these actors to request tokens on their input
channels; this in turn causes their upstream actors to become
activated; and so on, until a source (or token-producing) actor
is reached. Depending on the token consumption-production
rates of actors (i.e., the number of tokens required to invoke
an actor and the resulting number of tokens produced by the
invocation) and the structure of the network, a demand-driven
execution may still require queues of unbounded size. Alter-
natively, for many cases where a fixed buffer size is possible,
synchronous dataflow (SDF) [17] can be used to statically
determine (via the workflow structure and actor consumption-
production rates) a fixed, sequential schedule that guarantees
bounded channels. A number of “hybrid” approaches have also
been developed that combine these different approaches. These
algorithms aim at helping minimize queue sizes while allowing
some actors to run concurrently [13] (e.g., such an approach
is used instead of pure data-driven execution within Kepler).

However, these hybrid approaches can be complex to im-
plement (often leading to deadlock issues), cannot guarantee
unbounded queues, and can only minimize queue sizes in
certain cases at the cost of reducing (or even eliminating)
pipeline parallelism. Because scientific workflows often em-
ploy non-trivial, computationally expensive actors, increasing
parallelism becomes much more important than decreasing
queue sizes. This is especially true within data-intensive
workflows where the amount and size of data to be processed
is already large and difficult to manage using in-memory
approaches [2], [14]. For instance, in Fig. 1, a sequential
schedule would add 4 times the cost of executing actor A to
complete the workflow. This cost increases with the number
of actors in the workflow and the time required to execute
each actor. Our goal is to fully embrace data-driven execution
to maximize pipeline parallelism, while using external storage
to minimize the problems associated with in-memory queues
(where boundedness is less of an issue).

Data and pipeline parallelism. Pipeline parallelism is only
one type of concurrency that can be used to increase efficiency
in scientific workflows. For instance, a number of approaches
have explored the use of data parallelism by executing and
scheduling workflow pipelines using the MapReduce frame-
work [14], [18], [19] or using specialized approaches [3].
While in many cases these approaches can significantly im-
prove workflow execution by concurrently executing indi-
vidual actors, there is still a need within these systems to
incorporate pipeline parallelism. As discussed in [15] and [14],
the standard approach used to implement pipelines in MapRe-
duce is to serially execute one MapReduce “program” per
actor, i.e., as a sequential schedule without any data streaming
between actor invocations. We see the work presented here as
complementary to data parallel approaches as well as being

beneficial within conventional execution approaches typically
used within systems such as Kepler and Taverna.

Provenance. A typical approach for collecting provenance of
scientific workflows is to layer provenance recording on top of
existing workflow execution (e.g., [9], [10], [12], [20]). This
means in-memory buffering is used together with a separate
step that detects and stores the inputs and outputs of actor
invocations, where storage of provenance information is often
within a relational database system. (Similar approaches are
also used to facilitate fault-tolerance in workflow systems
[21].) In general, these approaches incur both the negative
effects of in-memory buffering and the overhead caused by
external storage. In contrast, with efficient implementations of
persistent queues (i.e., external storage of channel buffers),
these separate steps can be combined to help minimize the
overhead of storing provenance information during workflow
execution.

III. PERSISTENT QUEUES FOR SCIENTIFIC WORKFLOWS

Fig. 2 shows the different buffering strategies we consider.
Fig. 2(a) and 2(b) represent the conventional approaches for
implementing channels in demand and data-driven scheduling,
respectively, where in-memory queues are used to buffer data
tokens; whereas Fig. 2(c—e) represent the different strategies
we consider for implementing persistent queues within data-
driven (i.e., pipeline parallel) scheduling. We discuss ad-
vantages and disadvantages of each persistent-queue strategy
below, and in the following section describe the external
storage approaches we have implemented for the different
strategies of Fig. 2.

Basic persistent queues. Fig. 2(c) represents a straightforward
approach for persistent queues in which the channel is effec-
tively replaced by external storage (e.g., a relational database,
as shown in the gray box denoting the modified channel). In
this case, a put operation made by an invocation of the source
actor A inserts a data token into the underlying external queue.
Each data token is assigned a put order, which is a unique
value denoting the order the token was added (via the put
operation) to the queue. When a get operation is made by
an invocation of the destination actor B, the channel retrieves
from external storage the data token corresponding to the next
item in the queue (e.g., in the case of a relational database
implementation, the token would be retrieved by issuing an
appropriate SQL query). Once a data token is retrieved from
external storage, it is not removed from the queue. Instead, all
data tokens added by a put operation are maintained within
external storage, e.g., as part of the provenance record of the
workflow. Thus, the channel maintains a last put and a next
get variable that stores the put order of the last token added
to the database and the put order of the next token to retrieve
from the database, respectively. Once a token is returned by
the get operation, the next get variable is incremented. This
means that an invocation of B is blocked whenever the next get
value is larger than the last put value. The channel is initialized
such that last put has the value 0 and next get has the value
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Fig. 2. Strategies for implementing channel buffers: (a-b) standard in-memory
buffers used in demand-driven and data-driven execution; (c) a straightforward
persistent queue implementation where external storage completely replaces
the channel; (d) extension of (c) where read/write tokens are cached in
memory prior to being placed in external storage; and (d) the use of a “fast
track” within the channel to help further reduce overhead of using external
storage.

1 (when the first token added to the queue is assigned a put
order value of 1).

Cached Persistent Queue. The basic persistent queue of
Fig. 2(c) adds significant overhead (depending on the external
storage implementation used) onto the put and get oper-
ations, since each call has the additional cost of accessing
external storage as well as serializing and deserializing data
tokens, respectively. Compared to an in-memory queue, this
can considerably slow down each put and get operation. To
help avoid some of this cost we add in-memory put and get
caches to the channel, as shown in Fig. 2(d). When a put
operation is made by A, the data token is immediately stored
within the put cache. The put cache is controlled by a separate
thread that removes tokens from the cache (e.g., once the cache
is close to filling) and adds them into the external queue. In
this case, unless the put cache reaches capacity, A does not
have to wait until a data token is serialized and added to the

external queue to continue its execution. A get cache is used in
a similar way, namely, a separate thread loads data tokens into
the get cache (e.g., once the cache is close to empty), allowing
calls to get to simply retrieve and remove data tokens from
the cache. Thus, assuming there are tokens available in the get
cache, B does not have to wait for tokens to be retrieved and
deserialized from external storage to continue its execution.
The use of put and get caches can additionally help reduce
overhead by using “bulk” reads and writes to external storage,
i.e., by batching updates and retrieving multiple tokens within
a single query, which for many systems can be much faster
than inserting and retrieving single tokens at a time. Unlike the
in-memory queues of Fig. 2(a) and 2(b), put and get caches
are only used here for caching: the size of the caches can be
specified prior to workflow execution (as a tuning parameter)
and are guaranteed not to overflow since they are always
backed by external storage.

Fast-tracked Persistent Queue. In Fig. 2(e) we introduce a
special fast-track pipe between the put and get caches on a
channel to further reduce the overhead of external storage. The
basic idea of a fast-track is to allow tokens to move directly
from a put cache to a get cache without B having to wait until
the token is sent through external storage. Assuming the put
cache has not been written out to external storage before B
requests tokens stored within it, the fast track allows B to use
tokens produced by A without having to wait for them to be
serialized, added to external storage, retrieved from external
storage, and deserialized. Once a token has been fast-tracked,
it continues to remain in the put cache until it is written
to external storage. Once used by B, the next get value on
the channel is still incremented (thus, with fast-tracking, the
next get value can increase well beyond the last put value,
depending on cache sizes). Similar to the put and get caches,
implementing a fast-track requires adding an additional thread
to each channel. While the put and get cache can allow A and
B to execute faster independently (e.g., by not requiring A
to wait for the token to be placed in external storage before
calling put again), the fast-track allows A and B to execute
faster “in concert” (i.e., during direct communication on the
channel).

IV. IMPLEMENTATION AND EVALUATION

To verify and evaluate the different approaches for imple-
menting channels discussed in the previous section, we have
developed a simple workflow engine based on the dataflow
process network model. The engine was developed in Java, and
provides an API for specifying actors and workflows, which
largely follows the approach used within the Kepler system
(although our implementation contains many fewer features).
While our system was developed primarily to experiment with
different channel implementation strategies, it can easily be
incorporated within Kepler to provide more flexible queuing
strategies. A main feature of our system is that it was de-
signed to easily support different external storage approaches
for implementing persistent queues. Below we describe the
different underlying storage systems we use, and also present



the results of our initial experimental evaluation comparing
the different strategies for implementing channels (including
the use of persistent queues).

A. Underlying Storage Systems

As mentioned above, the workflow engine we developed
allows different backend storage technologies to be selected
independently from the specific strategy used to realize per-
sistent queues. Thus it is possible to select, e.g., a fast-tracked
persistent queue strategy independently of the external storage
system to use. The primary reason for adding this flexibility
was to test how different types of external storage technologies
performed. However, this approach also allows for workflow
developers (e.g., using Kepler) to be able to configure a
workflow to use a specific external storage system of their
choice, which may be beneficial in some situations, e.g., for
provenance applications that rely on specific external database
systems. The system currently supports the following three
external storage approaches.

Relational storage using MySQL. In this approach, each
channel is represented by a table within a relational database.
We used MySQL for our tests, however, any relational system
supporting JDBC can be used. Storing and retrieving tokens
from the database is performed using SQL statements. Be-
sides being an obvious choice for external, persistent storage,
relational databases are used in many workflow systems as
a mechanism for storing provenance information (although
some systems also store provenance using semantic web
technologies, while a few offer a choice between relational
and file-based storage [20]).

Non-relational database system using MongoDB. One po-
tential issue with using a backend relational database for
persistent queues is the overhead that can occur with database
reads and writes. To help minimize this overhead, in this
approach each channel is represented as a separate collection
within a MongoDB database. MongoDB [16] is one of a
number of non-relational (essentially nested key-value pair)
database systems that optimizes for fast reads and writes (and
scalability). MongoDB also has an advantage in that it is
extremely easy to setup and use, and provides rich query
support.

File-based external token storage. As discussed in the pre-
vious section, persistent queues access external storage using
a simple pattern in which tokens are sequentially read and
written from the channel. To further minimize the overhead of
channel reads and writes, we developed a custom, file-based
storage approach. In particular, each channel is associated with
a separate file. Instead of using last put and next get variables,
a file output stream and input stream is used, respectively.
Tokens are added to the queue by appending them to the end
of the file using the file output stream. The file input stream
reads tokens from the queue, and is always positioned at the
associated next get token (if there is one). Reads are especially
fast using this approach since we do not have to “search” for
a token with a given put order.

(a) Basic Filter workflow

Lo 4=tr bts )

(b) Mergesort workflow

Fig. 3. Workflows used to evaluate the different channel strategies: (a) a
simple workflow for filtering token streams; (b) a workflow for sorting a token
stream using mergesort, where all intermediate lists are stored in channels;
and (c) a workflow for sorting using insertion sort, again with all intermediate
lists stored in channels.

Additionally, for MySQL and MongoDB, we also imple-
mented versions that perform batch reads and writes (see
Sec. III).

B. Experimental Evaluation

To evaluate the effectiveness of using persistent queues we
performed a number of tests comparing the above strategies for
implementation channels and using different backend storage
systems. Our main goal in evaluating persistent queues was to
gain a better understanding of the overhead of these different
approaches, with the overall aim of minimizing the overhead
of using persistent queues as much as possible in data-intensive
workflows.

To explore the overhead of persistent queues, we used the
following simple workflows within our prototype workflow
engine (see Fig. 3). Each workflow contains a data source and
sink actor. The data source actor reads an unordered sequence
of dictionary words line-by-line from a file, converts each word
into a data token, and passes the token on to downstream
actors. The data sink actor simply takes a token containing
a word as input, and appends the word to an output text file
(which is also used to verify the workflow output is correct).
To make the workflows somewhat more realistic in terms of
processing input and output, the source and sink actors have
small delays to better simulate work being done.

Simple Filter. As shown in Fig. 3(a), this workflow consists
of a source actor, a simple filter actor, and a sink actor. The
filter actor selects tokens (based on a given condition) received
by the source actor and passes them on to the sink actor.
Below we consider two cases for the filter workflow. In the
first case, the filter actor acts a simple pass-through that sends



all tokens received to the sink actor. In this case, the filter
actor has a configurable delay that can be used to simulate
processing. The delay is implemented as a simple busy loop.
In the second case, the filter actor checks if the word in a
given token begins with the letter ‘c’ (to reduce the number
of tokens sent to the sink actor). This workflow does not
put strain on channel queues, i.e., queue sizes are kept small
since the source, filter, and sink actors take close to the same
amount of time to execute and send and receive one token
at a time. Instead, this workflow is largely used to evaluate
the overhead of the different strategies when a small amount
of queuing is required. This workflow, which is similar to
the example in Fig. 1 (but with one additional actor), is also
used to compare data-driven (pipeline parallel) execution to
demand-driven (sequential) execution.

Mergesort. As shown in Fig. 3(b), this workflow consists of a
source actor, a split actor, a mergesort actor, and a sink actor.
The workflow sorts the word list alphabetically and stores the
result in a new word list file. The source actor connects to
a split actor that inserts a special split token between every
data token. The split token is used to break the input list into
initial sublists of length one. The resulting list is then passed
to the mergesort actor, which sorts the list using three channels
(shown as A, B, and T in the figure) that each connect back
to the merge actor. The mergesort actor reads one sublist into
the temporary channel 7'. It then merges the sublist on 7" with
the first sublist on channel A, sending the merged list onto
the third channel B. When the entire list has been merged,
the mergesort actor switches “directions” and merges into the
channel that has just been emptied (in this case A). When
there is only one sublist left, the resulting sorted list is sent to
the sink actor. In terms of the use of channels, this workflow
primarily reads from one channel while writing to another
channel (as opposed to switching between reads and writes
on a single channel). However, although extremely simple,
this workflow requires a large number of tokens to be placed
within channel queues since the intermediate results of the sort
are being “stored” in the channels. Thus, the mergesort actor
simply performs comparisons and token routing, relying on
the channels to manage data tokens.

Insertion sort. As shown in Fig. 3(c), this workflow consists
of a source actor, an insertion sort actor, and a sink actor. Like
mergesort, this workflow sorts the wordlist received by the
source actor. Each time the insertion sort actor receives a new
(unsorted) token, it spins through its self-connecting channel
until it finds the location where the token should be inserted by
getting a token off the channel, performing a comparison, and
then putting a token back onto the channel. When it receives an
end token from the source actor, it sends the entire sorted list
to the sink actor. In contrast to the mergesort workflow, this
workflow interleaves reads and writes on its self-connecting
channel. However, like mergesort, the insertion sort workflow
requires a large number of tokens to be stored within channel
queues.

Figures 4 through 6 summarize the results of our tests for
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Fig. 4. Total execution times for a “passthrough” filter workflow run over

20,000 input words using different delay settings (as shown, loop iterations).
The top graph only shows one of the MySQL approaches, whereas the bottom
graph shows each approach.

each of the above workflows. Each experiment was performed
using a dual-core 3.0GHz Intel Core 2 vPro PC running
Windows 7 with 3GB of RAM and 20GB of free disk space.
We used MongoDB version 1.6.3 with version 2.1 of the Java
driver, and MySQL server version 5.1 with version 5.1.13 of
the MySQL JDBC driver.

The top of Fig. 4 shows the results of running the first
version of the filter workflow (where the filter simply passes
along received tokens) over a fixed number of input words
(20,000). Each approach was run over different delay set-
tings in the workflow given by the number of iterations in
a busy loop (for each actor). On average, the busy loop
creates a delay of between (approximately) 0 and 2 ms.
As shown in Fig. 4, after only a small delay is created,
the execution time of the demand-driven workflow quickly
surpasses the data-driven approaches, except for the case of
MySQL. In addition, shortly after this delay, each of the non-
MySQL data-driven approaches begin to converge, with in-
memory queues (Mem) being slightly faster than the file-
based storage, followed by MongoDB. Thus for even a very
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Fig. 5. Results of the different strategies and storage approaches for the filter
workflow (top) with a detailed view showing the first 500K tokens (bottom).

simple workflow with a relatively small input data set, we
can quickly see the advantages of pipeline parallelism over
sequential scheduling. With MySQL, however, the overhead
of reads and writes eliminates the performance gains of
pipeline parallelism, even when batching and a fast-tracking
are used. The bottom of Fig. 4 shows the MySQL approaches
in relation to the other approaches. Here we can see that
caching (MySQLC) provides a significant benefit over the
simple buffer approach (MySQL1), which is still considerably
slower than using MySQL with batch reads and writes and
the fast-track (MySQLFB). Alternatively, in the top of Fig. 4,
the file-based storage approach (File) has very little overhead
compared to using in-memory buffers.

The top of Fig. 5 shows the overall results of running the
second version of the filter workflow (where words beginning
with the letter ‘c’ are passed along) over increasing numbers
of input words, ranging from 50 to 1 million. The bottom of
Fig. 5 shows the same graph, but only for the first 500,000

tokens (and without the MySQL results). This graph shows
similar results as those of Fig. 4, except that the basic
MongoDB channel (Mongol) performs slightly worse than
the basic MySQL channel (MySQL1) and significantly worse
than the MySQL channel with batch reads and writes and the
fast-track. However, MongoDB used with caching (MongoC),
fast-track (MongoF), and fast-track with batch reads and writes
(MongoFB) significantly outperforms the MySQLFB approach
(where MongoFB appears to be the most efficient of the four
MongoDB channels shown). As in Fig. 4, in-memory data-
driven execution is the fastest, but is only slightly faster than
the customized, file-based external storage approach.

Fig. 6 shows the results (both summarized and zoomed in)
of the mergesort and insertion sort workflows for MongoDB,
the custom file, and in-memory data-driven approaches. As
above, MySQL is considerably slower than these approaches,
and so not shown in the graphs. In both workflows, the file-
based approach using a fast-track (FileF) outperforms the sim-
ple file approach (which was not the case with the passthrough
and filter workflows), and is very close to the in-memory
approach. In fact, for insertion sort, FileF does slightly better
than in-memory queues. For the mergesort workflow, we see
the two issues arise with using in-memory buffering for data-
intensive workflows: (1) after approximately 7.5 million input
tokens, we begin to see a sharp slowdown (due to paging),
and (2) after 10 million input tokens, the system crashes
(because of memory limitations). However, in both file-based
approaches (as well as the MongoDB approaches) neither of
these cases occur.

Taken together, these tests (although limited in scope)
demonstrate that using persistent queues is both feasible, and
especially for data-intensive workflows, incurs only a small
amount overhead (especially when caching, fast tracked chan-
nels, read/write batching, and optimized storage approaches
are used), while gaining the benefits of using external storage
for channel queues. These benefits can include provenance
storage “for free” as well as the ability to run data-intensive
workflows without in-memory performance issues due to pag-
ing or overflowing buffers, as was the case in the mergesort
workflow. While the tests above were targeted at isolating
certain behavior (e.g., relative actor delays, actors that process
large numbers of data items but with small to large queuing
needs), many real-world scientific workflows will have a large
number of actors and connections that mix these general
patterns. In more complex cases, the overall time required
to execute actors, the amount of time each actor requires in
comparison to other actors, and the amount of data both being
passed and that must be queued within the workflow will each
contribute to the overhead and performance benefits of using
external storage for implementing workflow channels.

V. SUMMARY

We have described approaches for using external storage
to implement persistent queues in dataflow process networks.
The goal of this work is to improve and extend current
support for data-intensive scientific workflows in two primary
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Fig. 6. Result of mergesort (top left) with first SOK tokens (bottom left) and insertion sort (top right) with first 500 tokens (bottom right).

ways: to overcome issues with in-memory based queues for
enabling pipeline parallelism; and to reduce the overhead
of using external storage of data tokens during workflow
execution. We presented a general framework for reducing
overhead in channels using external storage, compared dif-
ferent external storage strategies including relational and non-
relational database systems and a custom file-based approach
(for fast sequential reads and writes). Our results show that
the framework is feasible and can reduce overhead when using
external storage for implementation channels, making it close
to (and sometimes more efficient than) in-memory queues.
Our results can also be used to improve the performance
of existing provenance recording techniques by integrating
persistent queues with provenance collection and storage. As
future work we intend to add persistent queues to Kepler and
explore ways to combine our approaches with data parallelism.
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