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Abstract. Provenance graphs generated from real-world scientific workflows
often contain large numbers of nodes and edges denoting various types of prove-
nance information. A standard approach used by workflow systems is to visu-
ally present provenance information by displaying an entire (static) provenance
graph. This approach makes it difficult for users to find relevant information and
to explore and analyze data and process dependencies. We address these issues
through a set of abstractions that allow users to construct specialized views of
provenance graphs. Our model provides operations that allow users to expand,
collapse, filter, group, and summarize all or portions of provenance graphs to
construct tailored provenance views. A unique feature of the model is that it
can be implemented using standard relational database technology, which has
a number of advantages in terms of supporting existing provenance frameworks
and efficiency and scalability of the model. We present and formalize the opera-
tions within the model as a set of relational queries expressed against an underly-
ing provenance schema. We also present a detailed experimental evaluation that
demonstrates the feasibility and efficiency of our approach against provenance
graphs generated from a number of scientific workflows.

1 Introduction

Most scientific workflow systems record provenance information, i.e., the details of a
workflow run that includes data and process dependencies [11,20]. Provenance infor-
mation is often displayed to users as a (static) dependency graph [16,13,7]. However,
many real-world scientific workflows result in provenance graphs that are large (e.g.,
with upwards of thousands of nodes and edges) and complex due to the nature of the
workflows, the number of input data sets, and the number of intermediate data sets pro-
duced during a workflow run [10,11], making them inconvenient to explore visually.

The goal of the work described here is to help users more easily explore and analyze
provenance information by allowing them to specify and navigate between different
abstractions (or views) of complex provenance graphs. Specifically, we describe a set
of abstraction mechanisms and operators for scientific workflow provenance graphs
that allow users to create, refine, and navigate between different views of the same un-
derlying provenance information. We consider the following levels of granularity: (1)
A workflow run represents the highest level of abstraction; (2) An actor dependency
graph consists of the types of processes (actors) used in a workflow run and the general
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flow of data between them; (3) An invocation dependency graph consists of individ-
ual processes (invocations) within a run and their implicit data dependencies; (4) A
structure flow graph consists of the actual data structures input to and output by each
invocation; and (5) A data dependency graph consists of the detailed data dependencies
of individual data items. In addition, we consider navigation operations that allow all or
a portion of each provenance view to be expanded or collapsed, grouped into compos-
ite structures, filtered using a high-level provenance query language, and summarized
through aggregation operators.

Contributions. We present a general provenance model that enables users to explore
and analyze provenance information through novel graph-based summarization, navi-
gation, and query operators. We also show how this model can be implemented using
standard relational database technology. We adopt a relational implementation for two
reasons. First, many existing workflow systems that record provenance store this infor-
mation within relational databases [11], making it relatively straightforward to adopt
the implementation described here. Second, the use of standard database technology
can provide advantages in terms of efficiency and scalability over other general-purpose
graph-based approaches (e.g., [12]) that provide only in-memory implementations. Fi-
nally, we demonstrate the feasibility of our implementation through an experimental
evaluation of the operators over real and synthetic scientific-workflow traces.

Organization. The basic provenance model and query language that our view abstrac-
tions and navigation operators are based on is presented in Section 2. The different
levels of abstraction and navigation operators supported by our model is defined in Sec-
tion 3. We show how our model can be implemented within a relational framework
in Section 4, which describes the relational schemas used to store provenance infor-
mation and the queries used to execute each of the navigation operations and views.
Our experimental results are presented in Section 5, which demonstrates the feasibility
and scalability of the implementation. Related work is discussed in Section 6 and we
conclude in Section 7.

2 Preliminaries: Provenance Model and Query Language

In our provenance model, we assume that workflows execute according to standard
dataflow-based computation models (e.g., [15,17]). In addition, the provenance model
supports processes that can be executed (i.e., invoked) multiple times in a workflow
run and can receive and produce data products that are structured according to labeled,
nested data collections (e.g., as XML). To help illustrate, consider the simple workflow
definition shown in Fig. 1a. This workflow consists of three actors a, b, and c; distin-
guished input and output nodes; and four data-flow channels. The channels constrain
how data is passed between actors within a workflow run. In paticular, the input to the
run is passed to invocations of a, the results of a’s invocations are passed to invocations
of b, and so on.

Fig. 1b shows a high-level view of an example run of this workflow, called a struc-
ture flow graph (SFG). As shown, each actor invocation receives a nested-collection
data structure, performs an update on a portion of the structure (by either adding or
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Fig. 1. An example workflow graph (a) with a corresponding structure flow (b) and fine-grained
dependency (c) graph together with associated data (d) and invocation (e) dependency graphs

removing items), and then passes the updated version to downstream actors. An SFG
consists of the intermediate data structures si that were input to and output by actor in-
vocations, where edges denote “coarse-grained” dependencies [2]. In this example, the
first invocation a:1 of actor a takes as input s0 and produces the updated version s1. The
actor b is invoked twice to produce the modified structure s2. The first invocation b:1
removes item 6 in s1 and adds item 10, and similarly, the second invocation b:2 removes
item 7 and adds item 11. The structure s2 is the result (union) of the two independent
modifications s1

2 and s2
2. Finally, invocation c:1 modifies s2 to produce the output of

the run s3. This use of nested data collections within scientific workflows is supported
within both Kepler [7] and Taverna [18] as well as more recent approaches such as [2].
These systems also often support independent invocations as in Fig. 1, where actor b
is “mapped” over its input structure such that each invocation of b is applied indepen-
dently to a specific sub-collection of b’s input. Workflow systems that support these and
other types of iterative operations (e.g., [17,5]) typically require each of the indepen-
dent invocations to process a non-overlapping portion of the input to avoid downstream
structure conflicts.
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Fig. 2. A cyclic workflow graph (a) with a corresponding SFG (b) and data dependency graph (c)

In addition to coarse-grained dependency information, many applications of prove-
nance [2,17,4] also require “fine-grained” dependencies. For instance, invocation a:1 in
Fig. 1b resulted in two new collections (items 4 and 7). However, without also captur-
ing fine-grained dependencies, it is unclear which items in the input of a:1 were used to
derive these new collections. Fig. 1c shows the fine-grained (or explicit) dependencies
for each structure in our example run. For example, the arrow from data item 2 in s0
to collection item 4 in s1 states that 4 (including its containing items) was created from
(i.e., depended on) 2 via invocation a:1, whereas item 7 was introduced by a:1 using
item 3. As another example, the dependency from item 4 in s1 to item 10 in s2 states
that item 10 was created by invocation b:1 using item 4 and its containing items 5 and
6. Note that from Fig. 1c it is possible to recreate the SFG in Fig. 1b as well as the other
views including the standard data and invocation dependency graphs of Fig. 1d and 1e.

A workflow execution trace is represented as a fine-grained dependency graph, i.e.,
the trace stores the information shown in Fig. 1c. Each trace stores the data structures
input to and produced by the workflow run and the corresponding fine-grained depen-
dencies among structures. The parameter values supplied for each invocation are also
stored within a trace (not shown in Fig. 1). A trace can be represented in a more con-
densed form by only storing data and collection items shared by intermediate struc-
tures once together with special provenance annotations for item insertions (including
dependency information) and deletions [5]. This approach is similar to those for XML-
based version management (based on storing “diffs”). The provenance model is able to
represent a large number of workflow patterns and constructs, including iteration and
looping. Fig. 2 gives a simple example of a trivial iterative calculation in which an actor
a is invoked repeatedly until it reaches a fixed point (the output value computed is the
same as the input value).

The provenance model supports queries expressed using the Query Language for
Provenance (QLP) [4]. In QLP, queries are used to filter traces based on specific data or
collection items, fine-grained dependencies, and the inputs and outputs of invocations.
QLP is similar in spirit to tree and graph-based languages such as XPath and generalized
path expressions [1]. Unlike these approaches, however, QLP queries are closed under
dependency edges. That is, given a set of dependency edges (defining a fine-grained
dependency graph), a QLP query selects and returns a subset of dependencies denoting
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the corresponding subgraph. This approach provides advantages in terms of supporting
incremental querying (e.g., by treating queries as views) and for query optimization [4].

As an example of QLP, the query “ ∗ .. 10 ” returns the set of dependency edges
within a fine-grained dependency graph that define paths starting from any item in a data
structure and ending at item 10.1 Expressed over the trace graph in Fig. 1c, this query
returns the dependencies (2,a:1,4), (4,b:1,10), (5,b:1,10), and (6,b:1,10). Similarly,
the query “ ∗ .. 4 .. ∗ ” returns all dependencies defining paths that start at any data-
structure item, pass through item 4, and end at any item in the trace. For Fig. 1, this
query returns the same dependencies as the previous query plus the additional depen-
dency (10,c:1,12). In addition to items in data structures, QLP allows paths to be fil-
tered by invocations. For example, the query “#a .. #b:1 ..∗” returns dependencies that
define paths starting at input items of any invocation of actor a, contain a dependency
edge labeled by invocation b:1, and end at any data-structure item. Applied to the ex-
ample in Fig. 1, this query returns the same set of dependencies as the previous query.
QLP uses “@in” and “@out” to obtain the inputs and outputs, respectively, of invo-
cations or runs. For example, the query “∗ ..@in b:1” returns dependencies defining
paths from any item in a structure to an input item of the first invocation of actor b.
Similarly, the query “@in .. 10” returns the dependencies defining paths that start at
any item within an input data structure of the run and that end at item 10.

3 Operators for Exploring Workflow Provenance Graphs

While languages such as QLP can help users quickly access and view relevant parts
of large provenance graphs, doing so requires knowledge of the graph prior to issuing
a query. When a user does not know ahead of time the parts of the graph that are of
interest, or would like to create summarized views of only certain parts of a provenance
graph to place the relevant portions in context, additional techniques beyond basic query
languages are required. Here we describe extensions to the provenance model of the
previous section to help support users as they explore provenance graphs. We consider
both specific operations for transforming a provenance graph as well as a set of default
views. Using these extensions, a user can switch (or navigate) to different views of
all or a portion of the provenance graph by applying the transformation operators, or
by navigating directly to any of the default views (bringing the current view to the
same level of granularity). Given a transformation operator, a new view is constructed
using the navigate function. If vi is the current provenance view, t is the underlying
trace, and op is a transformation operator, navigate(t,vi,op) = vi+1 returns the new
provenance view vi+1 that results from applying op to vi under t.

Fig. 3 shows the default views and their relationship to the transformation operators.
In addition to the operators shown, we also consider operations for filtering views us-
ing QLP queries and for accessing summary data on current views. The rest of this
section defines the default views of Fig. 3 and the various operations supported by the
provenance model.

1 In QLP, “ ..” specifies a fine-grained dependency path of one or more edges, “∗” specifies any
item in the trace, “#” specifies invocations, and “@” specifies data structures.
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Fig. 3. Default views supported by the provenance model and corresponding navigation operators

Default Provenance Views. Navigation begins at a workflow run (e.g., see the top of
Fig. 4). Expanding the run gives an actor dependency graph (ADG), which is similar in
structure to a workflow graph, but where only actors that were invoked within the run
are shown. Expanding an ADG produces an invocation dependency graph (IDG). An
IDG consists of invocations and the implicit data dependencies between them, e.g., as in
Fig. 1e. A structure flow graph (SFG) can be obtained from an IDG by showing all input
and output structures of the trace, e.g., Fig. 1b. Expanding either an SFG or IDG results
in a data dependency graph (DDG), e.g., Fig. 1d. It is also possible to navigate from a
DDG to an IDG, an IDG to an ADG, and so on, by collapsing the current view (or in
the case of an SFG, by hiding all structures). We provide transformation operations that
allow a user to directly navigate to any of the graphs in Fig. 3 from any other graph. In
particular, the operators ADG, IDG, SFG, and DDG can be used to go directly to the ADG,
IDG, SFG, or DDG view, respectively.

Expand and Collapse. In general, the expand and collapse operators allow users to
explore specific portions of a provenance view at different levels of detail. We consider
three versions of the expand operator based on the type of entity being expanded. For
a run r, expand(r) = {a1,a2, . . .} returns the set of actors a1,a2, . . . that were invoked
as part of the run. Similarly, given an actor a, expand(a) = {i1, i2, . . .} returns the set
of invocations i1, i2, . . . of a. For an invocation i, expand(i) = {d1,d2, . . .} returns the
set of fine-grain dependencies d1,d2, . . . introduced by i, where each d j is a depen-
dency edge of the form (x, i,y) for data items x,y. The collapse operator acts as the
inverse of expand. Given a set of of dependencies {d1,d2, . . .} generated by an invoca-
tion i, collapse({d1,d2, . . .}) = i. Note that a user may select a single dependency to
collapse, which will result in all such dependencies of the same invocation to also col-
lapse. Given a set of invocations {i1, i2, . . .} of an actor a, collapse({i1, i2, . . .}) = a.
In a similar way, if a user selects only a single invocation to collapse, this operation
will cause all invocations of the corresponding actor to also collapse. Finally, for a set
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Fig. 4. Applying expand, collapse, show, and hide operators to only a part of each view

of actors {a1,a2, . . .} of run r, collapse({a1,a2, . . .}) = r. Again, collapsing any one
actor will result in setting the current view to the run view.

Example 1. The top left of Fig. 4 shows an initial expand step to the corresponding actor
dependency graph for the example run of Fig. 1 (labeled r in the figure). The second
navigation step expands only actor b in the ADG. Similarly, the right of the figure
shows invocation b:2 being expanded, resulting in the portion of the data-dependency
graph associated with invocation b:2 (i.e., with dependency edges labeled by b:2). The
final view shown contains each level of granularity, namely, actors, invocations, data
structures, and fine-grain dependencies. Fig. 4 also shows each of the corresponding
collapse operations. Note that the actor dependency graph is reconstructed by calling
collapse on the expression b:∗ which denotes all invocations of b in the current view.

Show and Hide. The show operator displays data structures within the current view.
The structures displayed depend on the type of entity selected (either a run, actor, or
invocation) and whether the input or output of the entity is chosen. We use the QLP
“@” construct within show to select both the entity and whether the input or output
is desired. The expression “@∗” denotes all inputs and outputs of each entity in the
view. The hide operator acts as the inverse of show by removing the specified struc-
tures. As an example, the show operator is used in the third navigation step of Fig. 4 to
display the output structure of invocation b:1 (s1

2 in Fig. 1b). Note that in this example,
show(@in c :1) would additionally display structure s2 from Fig. 1b.

Group and Ungroup. The group and ungroup operators allow actors and invocations
to be combined into composite structures. The group operator explicitly allows users to
control which items should be grouped and supports both actor and invocation granular-
ity. We consider two versions of group and ungroup. Given a set of actors {a1,a2, . . .},
group({a1,a2, . . .}) = g{a1,a2,...} returns a composite actor g{a1,a2,...} over the given set.
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Fig. 5. Actors and invocations combined into composite structures

For a composite actor g{a1,a2,...}, ungroup(g{a1,a2,...}) = {a1,a2, . . .} simply returns the
set of actors corresponding to the group (i.e., ungroup is the inverse of group). Similarly,
for a set of invocations {i1, i2, . . .}, group({i1, i2, . . .}) = g{i1,i2,...} returns a composite
invocation g{i1,i2,...}, and ungroup(g{i1,i2,...}) = {i1, i2, . . .} returns the original set.

Example 2. Fig. 5 shows three examples of using the group operator. Here we con-
sider only a portion of a workflow showing two actors a and b such that both were
invoked twice resulting in the actor dependency graph shown in the second navigation
step of Fig. 5a. Each invocation of a and b consume and produce one data item, where
the output of invocation a : i is used by invocation b : i. In Fig. 5a, invocations of the
same actor are grouped such that a:1 and a:2 form one group and b:1 and b:2 form a
different group. The result of the grouping is shown in the third view of Fig. 5a, and
the corresponding data dependency graph is shown as the fourth view. In Fig. 5b, in-
vocations with the same invocation number are grouped such that a:1 and b:1 form
one group, and a:2 and b:2 form a different group. Finally, in Fig. 5c, actors a and b
are first grouped, resulting in a composite actor with two distinct invocations. Unlike
in Fig. 5b, these invocations are of the same actor group and have different invocation
numbers, whereas in Fig. 5b two distinct groups are created. In general, forming invoca-
tion groups explicitly, as opposed to first forming actor groups and then expanding actor
groups, supports grouping at a finer-level of granularity by allowing various patterns of
composite invocations that are not possible to express at the actor level.

As shown in Fig. 5, composites created by the group operator are assigned special iden-
tifiers. In addition, the inputs, outputs, and dependencies associated with grouped items



Database Support for Exploring Scientific Workflow Provenance Graphs 351

are inferred from the underlying inputs, outputs, and dependencies of the invocations
of the groups. For showing dependencies in particular, this often requires computing
the transitive dependency closure associated with invocations of the group, e.g., as in
Fig. 5b and 5c (since items 3 and 4 are “hidden” by the grouped invocation). When a
group is created at the actor level, expanding the group results in a correspondingly
grouped set of invocations (as in Fig. 5c). These invocations are constructed based on
the invocation dependency graph. In particular, each invocation group of the actor group
contains a set of connected invocations, and no invocation within an invocation group is
connected to any other invocation in a different invocation group. Thus, the portion of
the invocation graph associated with the actor group is partitioned into connected sub-
graphs, and each such subgraph forms a distinct invocation group of the actor group.
When an invocation group is expanded, this composite invocation is used in structure
flow and data dependency graphs, resulting in provenance views where dependencies
are established between input and output items, without intermediate data in between.
This approach allows scientists to continue to explore dependencies for grouped invo-
cations (since fine-grain dependencies are maintained through groups, unlike, e.g., the
approach in [11]).

Filter. The filter operation allows provenance views to be refined using QLP query
expressions. Issuing a query using filter results in only the portion of the current
provenance view corresponding to the query answer to be displayed. Given a QLP query
q, filter(q) = {d1,d2, . . .} returns the set of fine-grain dependencies that result from
applying the query to the trace graph. These dependencies are used to remove or add
entities to the current view. In general, items can be added to a view when the current
view is based on a more selective query.

Aggregation. It is often convenient to see summary information about entities (actors,
invocations, etc.) when exploring provenance information. We provide standard aggre-
gate operators (count, min, max, avg) to obtain statistics for a user’s current prove-
nance view. The “count entity type of scope” operator returns the number of enti-
ties of entity type within a given scope expression. Entity types are either actors,
invocations, or data, which count the number of actors, invocations, or data items,
respectively. For the actors entity type, the scope is either ∗, denoting the entire view,
or a group identifier. For example, “count actors of ∗” returns two for each view in
Fig. 5, whereas “count actors of g1 : 1 returns one for the third view in Fig. 5. For
the invocations entity type, the scope is either ∗ (the entire view) or an actor or group
identifier. For instance, in the first view of Fig. 5a “count invocations of ∗” returns
four whereas “count invocations of a” returns two. The count operation is also
useful for exploring workflow loops, e.g., the expression “count invocations of a”
can be used to obtain the number of iterations of a in Fig. 2. For the data entity type,
the QLP “@” syntax is used to define the scope. For instance, for the invocation de-
pendency graph of Fig. 1e, “count data of @in” returns two (since two data items
are input to the workflow), and “count data of @out a:1” returns four (the num-
ber of data items output by invocation a:1). The min, max, and avg operations re-
turn the minimum, maximum, and average number of entity types within a view, re-
spectively. These operations can be used to compute the number of actors by group
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(e.g., “min actor by group”), the number of invocations by actors or groups (e.g.,
“min invocations by actor”), and the number of input or output data items by ac-
tor, group, or invocation (e.g., “min input data by actor”). Both the min and max
operators return the entity with the minimum or maxiximum count value, respectively,
as well as the number of corresponding entities. Finally, the params operation returns
the set of parameter values used in invocations of the current view. This operation can
also be restricted to specific actors, invocations, or groups, e.g.,params(a:1) returns the
parameter settings for invocation a:1 whereas params(∗) returns the parameter settings
for all invocations in the current view.

4 Implementation

In this section we describe an implementation using standard relational database tech-
nology for the operators presented in Section 3. As mentioned in the introduction, this
approach has benefits for efficiency and scalability (see Section 5). We first describe a
set of relational schemas for representing traces and default views, and then show how
the navigation operators can be implemented as relational queries over these schemas.

We consider three distinct schemas: (1) a trace schema T for representing the trace
information corresponding to a workflow run; (2) a dependency schema D for represent-
ing the result of executing QLP queries expressed through filter operations; and (3)
a view schema V for representing the user’s current provenance view. The trace schema
T consists of the following relations: Run(r,w) denotes that r was a run of workflow
w; Invoc(r, i,a, j) denotes that invocation i was the j-th invocation of actor a in run
r; Node(r,n, p, t, l, iins, idel) denotes that n was an item (node) in run r such that p is
the parent collection of n, t is the type of the item (either data or collection), l
is the label of n (e.g., XML tag name), and that n was inserted by invocation iins and
deleted by idel; DDep(r,n,ndep) denotes a dependency from item ndep to item n in run
r; DDepc(r,n,ndep) stores the transitive closure of DDep; IDep(r, i, idep) denotes an in-
vocation dependency from invocation i to idep; and IDepc(r, i, idep) stores the transitive
closure of IDepc. In general, storing the transitive closure improves query time for more
complex path-expression queries and simplifies a number of the operations presented
here. We show in [5] an approach for efficiently compressing the transitive closure re-
lations that only marginally affect the response time of basic queries (adding only an
additional join in many cases), and adopt this approach in Section 5 when describing
our experimental results. In [4] we extend this approach for efficiently answering QLP
queries, which we assume here for implementing filter operations. We also assume
the following views (expressed using Datalog) as part of T .

ADep(r,a,adep) :- IDep(r, i, idep), Invoc(r, i,a, j1),Invoc(r, idep,adep, j2).

ADepc(r,a,adep) :- IDepc(r, i, idep), Invoc(r, i,a, j1),Invoc(r, idep,adep, j2).

The dependency graph schema D consists of the single relation DepView(n f rom, i,nto)
denoting a dependency edge from item n f rom to nto labelled by invocation i. Simi-
larly, the view schema V consists of the single relation CurrView(e f rom, t f rom, l,eto, tto)
for e f rom and eto entites connected via an edge label l such that each entity’s type
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is denoted by tto and t f rom, respectively. The entity type can be either a run, actor,
invoc (invocation), data, coll (collection), or struct (structure). A structure is de-
noted by a QLP expression of the form @in [i | a] or @out [i | a] where invoca-
tion i and actor a are optional. The following are examples of possible tuples stored
within the current view relation: CurrView(r,run,⊥,⊥,⊥) stores a run view (⊥ de-
notes a null value); CurrView(a1,actor,⊥,a2,actor) stores an edge in an actor de-
pendency graph; CurrView(i1,invoc,⊥, i2,invoc) stores an edge in an invocation
dependency graph; CurrView(@out i1,struct,⊥, i2,invoc) stores an edge in a struc-
ture flow graph; and CurrView(n1,data,a:1,n2,data) stores an edge in a data depen-
dency graph.

When a user begins navigating a trace, the instance D of the dependency schema D
consists of the entire set of dependencies. After applying a navigation operation, the in-
stance D of the dependency schema D and V of the current view schema V are updated
as needed. For example, after applying an initial filter operation, the dependencies
of D are updated (denoted as D1) to store the result of the given QLP query over the
instances T of the trace schema T. The instance V of the view schema V is also updated
(denoted as V1) based on D1. Similarly, after applying an expand, collapse, show,
or hide operator, a new view V2 is created from D1, V1, and T . This process contin-
ues for each navigation step performed by the user, where only the current view and
dependency graph is stored together with the initial trace.

Queries to Generate Default Views. We can implement the default view operators
as queries over a trace instance T and dependency instance D as follows. First, we
define the following notation as shorthand for filtering relations in T by D. Given a
trace relation R, we write R(D) to denote the filtered version of R with respect to the
dependencies in D. For instance, IDep(D) is the invocation dependency relation (IDep)
containing only invocations that participate in dependency edges within D. Given a
dependency relation D, we define the following:

IDep(D)(r, i, idep):-IDep(r, i, idep),DepView(n1, i,n2),DepView(n2, idep,n3).
ADep(D)(r,a,adep):-IDep(D)(r, i, idep),Invoc(r, i,a, j1),Invoc(r, idep,adep, j2).

Node(D)(r,n, p, t, l, iins, idel):-Node(r,n, p, t, l, iins, idel),DepView(n, i,n2).
Node(D)(r,n, p, t, l, iins, idel):-Node(r,n, p, t, l, iins, idel),DepView(n1, i,n).

These relations are used to compute the default view operators for a run r (each of
which follow the same relation structure as CurrView):

ADG(a,actor,⊥,adep,actor) :- ADep(D)(r,a,adep).
IDG(i,invoc,⊥, idep,invoc) :- IDep(D)(r, i, idep).

DDG(n1, t1, i,n2, t2) :- DepView(n1, i,n2),Node(r,n1, p1, t1, iins1 , idel1),
Node(r,n2, p2, t2, iins2 , idel2).

Each of these operators returns a new view that replaces the current view. In a similar
way, we can define the structure flow graph for run r, which is similar to computing the
invocation dependency graph.

SFG(i,invoc,⊥,@out i,struct) :- IDep(D)(r, i, idep).
SFG(@out i,struct,⊥,@in idep,struct) :- IDep(D)r, i, idep).

SFG(@in idep,struct,⊥, idep,invoc) :- IDep(D)(r, i, idep).
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Queries to Generate Input-Output Structures. Given a trace T and a dependency
D, we compute the input and output structures of runs r, actors a, and invocations i as
follows. The input of a run r includes all data and collection items in the trace that were
not inserted by any invocation:

RunInput(n, p) :- Node(D)(r,n, p, t, l,⊥, idel).

The output items of r include those that (1) were either input to the run or inserted by
an invocation, and (2) were not deleted by an invocation:

RunOutput(n, p) :- Node(D)(r,n, p, t, l, iins,⊥).

The input of an invocation i includes all nodes not deleted by an invocation that i de-
pends on such that either the item (1) was inserted by an invocation that i depended on
or (2) was not inserted by an invocation and thus was an input to the run. The output of
i is computed similarly, i.e., by removing from the input of i the nodes deleted by i and
adding the nodes inserted by i. The following rules compute the input and output of a
given invocation i and a run r.

InvocInput(n, p):-Node(D)(r,n, p, t, l,⊥,⊥).
InvocInput(n, p):-Node(D)(r,n, p, t, l, iins,i).
InvocInput(n, p):-Node(D)(r,n, p, t, l,⊥, idel),Invoc(r, idel ,a, j),¬IDepc(r, idel ,i).
InvocInput(n, p):-Node(D)(r,n, p, t, l, iins, idel),IDepc(r, iins, i),Invoc(r, idel ,a, j),

¬IDepc(r, idel ,i).

Note that the first rule selects input items that were neither inserted or deleted within a
run, and the second rule selects input items that were deleted by the given invocation i.
The last two rules ensure the item was not deleted by an invocation that i depended on.
The output of invocations are defined similarly:

InvocOutput(n, p) :- Node(D)(r,n, p, t, l,⊥,⊥).
InvocOutput(n, p) :- Node(D)(r,n, p, t, l,i, idel).
InvocOutput(n, p) :- Node(D)(r,n, p, t, l,⊥, idel),Invoc(r, idel,a, j),

¬IDepc(r, idel,i), idel $= i.
InvocOutput(n, p) :- Node(D)(r,n, p, t, l, iins, idel),IDepc(r, iins,i),

Invoc(r, idel ,a, j),¬IDepc(r, idel ,i), idel $= i.

The input and output structures of actors (as opposed to invocations) are computed
by first retrieving the invocations that are in the current view, and then for each such
invocation, unioning the corresponding structures.

Queries to Group and Ungroup Actors and Invocations. To implement the group
and ungroup operators, we store the set of entities supplied to the group operator in
a temporary relation Group(e, t,n,g) where e is one of the entities being grouped, t is
the entity type (either actor or invoc), n is the group identifier, and g is the grouping
type. For example, to group invocations b : 1 and b : 2 into a group g1 : 1 we store the
tuples Group(b : 1,invoc,g1 : 1,invoc group) and Group(b : 2,invoc,g1 : 1,
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invoc group). The new view with grouped entities is generated as follows: (1) re-
trieve those tuples from the current view relation CurrViewi where e f rom and eto are
not entities to be grouped and store these in the new view CurrViewi+1; (2) if e f rom
is an entity to be grouped, then retrieve the tuple from CurrViewi and modify e f rom
and t f rom with the group identifier n and group type g, respectively; and similarly (3)
if eto is an entity to be grouped, perform a similar operation as in (2). These steps are
performed by the following queries. Note that we assume for each entity e of type t that
is not involved in a group within the current view, there exists a tuple Group(e, t,⊥,⊥).

CurrViewi+1(e f rom, t f rom, l,eto, tto) :- CurrViewi(e f rom, t f rom, l,eto, tto),
Group(e f rom, t f rom,⊥,⊥),
Group(eto, tto,⊥,⊥),

CurrViewi+1(n,g, l,eto, tto) :- CurrViewi(e f rom, t f rom, l,eto, tto),
Group(e f rom, t f rom,n,g),
Group(eto, tto,⊥,⊥).

CurrViewi+1(e f rom, t f rom, l,n,g) :- CurrViewi(e f rom, t f rom, l,eto, tto),
Group(tto,eto,n,g),
Group(e f rom, t f rom,⊥,⊥).

CurrViewi+1(n1,g1, l,n2,g2) :- CurrViewi(e f rom, t f rom, l,eto, tto),
Group(e f rom, t f rom,n1,g1),
Group(tto,eto,n2,g2).

Grouping has implications on how inputs, outputs, and data dependencies across
grouped entities are displayed. Inputs of grouped entities are computed by performing
the union of all the inputs of those entities that are a source node in the graph with re-
spect to entities to be grouped. Similarly, the outputs of grouped entities are computed
by performing the union of all the outputs of those entities that are sink nodes with
respect to the entities to be grouped. Also, as discussed in the previous section, data de-
pendency views over grouped entities require computing the transitive dependency clo-
sure of inputs and outputs of grouped entities. We denote the source entities of a group
as Groupsrc and the sink entities of a group as Groupsink. These relations are computed
by first deriving the dependency relations between the entities of the group and then
checking which one has no incoming edges (for Groupsrc), and similarly, which one
has no outgoing edges (for Groupsink).

The ungroup operator for the current view CurrViewi is performed as follows: (1)
for all invocations of the group, we retrieve their invocation dependencies; (2) for all
source invocations of the group (with respect to the invocation dependencies), we add
an edge to CurrViewi+1 from the eto to the source invocation; and (3) for all sink
invocations of the group, we add an edge to CurrViewi+1 from the sink invocation to
e f rom. Ungrouping of an actor is done in a similar way.

CurrViewi+1(i,invoc, l, idep,invoc) :- IDep(D)(r, i, idep),
Group(i,invoc,n,invoc group),
Group(idep,invoc,n,invoc group).

CurrViewi+1(e f rom, t f rom, l,e, t) :- CurrViewi(e f rom, t f rom, l,n,g),
Groupsrc(n,g,e, t).

CurrViewi+1(e, t, l,eto, tto) :- CurrViewi(n,g, l,eto, tto),Groupsink(n,g,e, t).
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Fig. 6. (a) Data dependency and (b) actor invocation complexity of synthetic traces

Expand, Collapse, and Aggregates. We expand a given invocation i to show
the dependency relationship between its inputs and outputs using the relation
DepView(n f rom, i,nto) in D. We collapse an invocation i by showing the actor cor-
responding to the invocation via the Invoc relation in T . We expand a given actor a
by obtaining the invocations of a that are in D. The current view is constructed directly
from these operations in a similar way as for grouping and ungrouping (i.e., by inserting
the corresponding relations in the new current view CurrViewi+1). Finally, the aggre-
gate operations are straightforward to compute using standard relational aggregation
queries over the current view, dependency, and group relations.

5 Experimental Results

Here we evaluate the feasibility, scalability, and efficiency of executing the navigation
operators over the approach in Section 4 on both real and synthetic traces. Real traces
were generated from existing workflows implemented within the Kepler scientific work-
flow system. Our experiments were performed using a 2.8GHz Intel Core 2 duo PC
with 4 GB RAM and 500 GB of disk space. Navigational operators were implemented
as SQL queries (views over the schema), which were executed against a PostgreSQL
database where all provenance traces were stored. The QLP parser was implemented in
Java using JDBC to communicate with the provenance database.

We evaluated the feasibility of executing the navigation operator queries using the
following real traces from scientific workflows implemented within Kepler: the GBL
workflow [7] infers phylogenetic trees from protein and morphological sequence data;
the PC1 workflow was used in the first provenance challenge [19]; the STAP and CYC
workflows are used in characterizing microbial communities by clustering and identify-
ing DNA sequences of 16S ribosomal RNA; the WAT workflow characterizes microbial
populations by producing phylogenetic trees from a list of sequence libraries; and the
PC3 workflow was used within the third provenance challenge2. These traces ranged
from 100–10,000 immediate data dependencies and 200–20,000 transitive data depen-
dencies. We also evaluated our approaches to determine the scalability of executing
navigation operators queries using synthetic traces ranging from 500–100,000 imme-
diate data dependencies, 1,000–108 transitive data dependencies, and data dependency

2 see http://twiki.ipaw.info/bin/view/Challenge/

http://twiki.ipaw.info/bin/view/Challenge/
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Fig. 7. Average query time for operators over real traces: (a) QD; (b) QS; (c) QG; and (d) QE

paths of length 10–100. These traces also contained 10–100 actors, 10–100 immediate
invocation dependencies, and 10–6,000 transitive invocation dependencies. The syn-
thetic traces were taken from [5], and represent typical dependency patterns of com-
mon scientific workflows [5,7,19]. Fig. 6a shows the complexity of data dependencies
(immediate and transitive) as the number of nodes in the synthetic traces increase, and
Fig. 6b shows the the complexity of invocation dependencies (immediate and transitive)
as the number of actors in the synthetic traces increase.

We use four types of operators in our evaluation: (QD) queries to generate default
ADG, IDG, and DDG views; (QS) queries to generate data structures (run, actor, and
invocation inputs and outputs); (QG) queries to group and ungroup actors and invo-
cations, and to retrieve their inputs, outputs, and fine-grained dependencies; and (QE )
queries to expand and collapse actors and invocations. Section 4 details the underlying
datalog queries for each operator type.

Feasibility and Efficiency Results. Fig. 7 shows timing results of the navigation op-
erators over real traces. The time to execute DDG operations (Fig. 7a) is smaller since
we store the result of previous QLP queries in the dependency instance D, which is
used to generate the result of DDG calls, whereas ADG and IDG operations need addi-
tional queries over provenance schema tables. The time to retrieve the input and output
structures of a run is less expensive than for an invocation (Fig. 7b). However, the time
to retrieve input and output structures for an invocation is less expensive for an actor.
This is because an actor can be invoked many times, which requires computing the
union of structures for all such invocations. Grouping invocations and actors is also less
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Fig. 8. Average query time for operators over synthetic traces: (a) QD; (b) QS; (c) QG; and (d) QE

expensive than their inverse ungrouping operations (see Fig. 7c), since ungrouping has
to perform many conditional joins with the current view to reconstruct the ungrouped
invocations, actors, and their relations to other items within the current view. Expanding
an actor is more expensive than expanding an invocation (see Fig. 7d) since expanding
an invocation involves dependencies that are already materialized as QLP query results,
but expansion of an actor must execute queries against schema tables through additional
conditional joins. Despite the complexity involved in executing such queries, our exper-
imental results show that each type of operation takes less then 1 sec, demonstrating the
feasibility and efficiency that can be obtained using a purely relational approach.

Scalability Results. Fig. 8 shows the results of executing navigation queries over the
synthetic traces. As shown, most of the queries are still executed in less than 1 sec (100
ms) for larger trace sizes, suggesting that a purely relational approach can scale to larger
trace sizes (compared with those obtained from the real traces used above). Note that
queries for implementing the expand and collapse operators (i.e., of type QE ) take
more time than the other operator types, which is due to the number of conditional joins
(as discussed earlier) that are required. Overall, however, the results for synthetic traces
confirm those discussed in the case for real traces above.

6 Related Work

Current approaches for exploring workflow provenance are based on statically visu-
alizing entire provenance graphs [16,14,13,7]. In these approaches, provenance graphs
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are typically displayed at the lowest level of granularity (e.g., fine-grain dependencies).
In the case of [14], query results are viewed independently of the rest of a provenance
trace. Some systems divide provenance information into distinct layers, e.g., VisTrails
divides provenance information into workflow evolution, workflow, and execution lay-
ers [8], and PASS divides provenance into data and process layers [21]. In all these
approaches, however, these levels are largely either orthogonal or hierarchical, whereas
the provenance views supported by our model (i) combine both hierarchical abstrac-
tions (i.e., ADGs, IDGs, and SFGs) with (ii) the ability to seamlessly navigate between
these different levels of granularity, while (iii) allowing users to summarize, group, and
filter portions of these views to create new views for further exploration of relevant
provenance information. The Zoom*UserViews system [6] (extended in [2] to work
with a fine-grained database provenance model for Pig Latin) provides a mechanism for
defining composite actors to abstract away non-relevant provenance information. Com-
posites are constructed over “relevant” actors to maintain certain dataflow connections,
thereby generating a view over the composites that is similar to the original. However,
unlike in our approach, users of the Zoom*UserViews system cannot explicitly define
their own composites, and composition is defined only at the actor level (where each
actor is assumed to have at most one invocation). Our approach also maintains group-
ing across views, maintains the original data dependencies for composites (unlike in
the Zoom*UserViews approach, which switches to coarse-grain dependencies), and we
support a more general provenance model that explicitly handles structured data.

Our navigation approach is inspired by and has similarities to those proposed previ-
ously for exploring object-oriented [9] and XML databases, where graphical environ-
ments allow users to “drill-down” from schema to instances and navigate relationships
among data. For example, [9] provides an integrated browsing and querying environ-
ment that allows users to employ a “query-in-place” paradigm where navigation and
query can be mixed. In contrast, provenance information is largely schema-free, i.e.,
the information contained within an ADG, IDG, and SFG is not constrained by an ex-
plicit schema, and queries in our model are posed directly against the items contained
within these views (or generally, the fine-grain dependency graph).

7 Conclusion

We have presented a general model to help users explore provenance information
through novel graph-based summarization, navigation, and query operators. The work
presented here extends our prior work [7,3] by providing a significantly richer model for
navigation (adding additional views, the show and hide constructs, and aggregation) as
well as an implementation using standard relational database technology. We also pro-
vide experimental results demonstrating the feasibility, scalability, and efficiency of our
approach. Because of the size and complexity of real-world scientific workflow prove-
nance traces [10,4], providing users with high-level navigation operations and views for
abstracting and summarizing provenance information can provide a powerful environ-
ment for scientists to explore and validate the results of scientific workflows.
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