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Abstract— We consider the task of merging datasets that have
been organized using different, but aligned taxonomies. We
assume such a merge is intended to create a single dataset that
unambiguously describes the information in the source datasets
using the alignment. We also assume that the merged result
should reflect the observations of the datasets as specifically as
possible. Typically, there will be no single merge result that is
both unambiguous and maximally specific. In this case, a user
may be provided with a set of possible merged datasets. If the
user requires a single dataset, that dataset loses specificity. Here
we examine whether the data exchange setting can provide a way
to derive a “best-effort” merge. We find that the data exchange
setting might be a good candidate for providing the merge, but
further research is needed.

I. INTRODUCTION

In data exchange, a source schema S and a target schema
T are given, together with source-to-target dependencies Xy,
and target schema constraints X,. Given an input instance /
of S, a solution to the data exchange problem is a target
instance J of T, such that (I,J) satisfies Xy, and J satisfies X,.
In general, there are multiple solutions, so the certain answers,
i.e., contained in all possible solutions J, are usually reported.
Data exchange has been well studied in recent years [1], [2],
[3] and tractable algorithms for many common scenarios have
been developed. In our application projects, we are interested
in another problem, i.e., of merging taxonomically organized
datasets, using articulations between taxonomies. In this paper
we present some first ideas for casting the latter problem as
a variant of the former, with the hope that we can leverage
existing results in data exchange for our data merge problem.

A. Merging Taxonomically Organized Datasets

We address the problem of merging datasets that have been
registered to different, but aligned taxonomies (inheritence
hierarchies). Consider, e.g., the simplistic scenario in Fig. 1:
nodes A, B, C are concepts from taxonomy T, while D is
from T,. As usual, concepts denote sets (whose members
may be unknown) and thus can be represented by unary
relations. Within a taxonomy, an arrow A—C denotes an
inclusion (or isa) relation; its semantics is captured via a first-
order statement Vx : A(x) — C(x). When merging datasets that

have been registered to different taxonomies T and T, we
assume that we have at least partial information in the form of
articulation constraints between pairs of concepts from T and
T,.! For example, the articulation T{.B C T,.D (or B C D for
short) states that (i) every (member of) B is also a (member
of) D, and (ii) some D are not B, i.e., D\ B is not empty.
Similarly, the articulation A D states that concepts A and D
overlap, i.e., the sets A\ D, D\ A, and AND are all non-empty.
As articulation constraints, we use the mutually exclusive
RCC-5 relations @, C, 2, !, =, denoting overlap, proper part
and its inverse, disjointness, and equivalence, respectively [4].
These relations have proven to be useful in reasoning about
taxonomies and taxonomy alignments [5], and can be used to
merge taxonomies into a single, combined taxonomy [6].

In addition to the taxonomies and articulations, Figure 1
describes two datasets D; and D». In this paper, we restrict
ourselves to very simple datasets that describe the presence or
absence of instances of named concepts at a single place and
time. For example, the tuple (A,P) € Dy states that at least one
instance of the concept (or taxon) T;.A was observed; (B,N) €
D means that no instances of T.B were observed.? Similarly,
D, states that at least one instance of T,.D was observed. Note
that a given dataset may be logically inconsistent with its asso-
ciated taxonomy. For example, a dataset annotated to T; would
be inconsistent if it reported the presence of A but the absence
of C (since every A is also a C). Presence/absence datasets
such as these are commonly used in ecology, biodiversity,
and evolutionary biology research. For example, knowledge
about where a given species was observed can be used to
predict other locations where it may be found. This type
of analysis, called species niche modeling, has been used to
predict where invasive species are likely to take root [7], how
diseases are likely to spread [8], and how global warming
may impact biodiversity [9]. Many online databases of species
occurrence data exist.® If all of the databases used the same

Datasets using the same taxonomy can be merged by unioning them.

2p and N stand for present and not present, respectively.

3As of the date of this publication, the Global Biodiversity Information
Facility Data Portal (http://www.gbif.org) provides access to almost 190
million occurrence observations, most of which have been georeferenced.
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Fig. 1: Aligned taxonomies 77,7, with datasets to be merged.

taxonomy to organize and name species, the occurrence data
from these databases could be easily combined. Unfortunately,
there frequently exist many taxonomies organizing a given set
of species, and the meaning of a given taxon name may differ
depending on which taxonomy is used [10]. For example,
two observed organisms may be given the same species
name according to one taxonomy, but different species names
according to a second taxonomy. To address the problems this
causes for data integration, experts create alignments between
frequently used taxonomies [11], [12], [13].

Given this setting, it is natural to ask how two datasets
D; and D, can be combined into a single merged dataset
D3 annotated to a new taxonomy T3 created by merging
the initial pair of taxonomies T;,T,. We call this setting
taxonomic data merge. The taxonomic data merge setting can
be seen as a variant of the standard data exchange scenario as
follows: The union of datasets D U D, constitute the source
instance I, the concepts in the taxonomies T, T, become
relations in the source schema S, the concepts in the merged
taxonomy T3 make up the relations in the target schema T,
the source-to-target constraints ¥y are somehow derived from
articulations/taxonomy constraints, and the relationships in the
merged taxonomy are represented by X;. The solutions J of
this data exchange problem can then be understood as the
solutions to our taxonomic data merge problem. There are,
however, points of mismatch that complicate the comparison.

B. Dataset Constraints

Typically, when a dataset uses a concept drawn from a
taxonomy, not every implied concept is included in the dataset.
For example, D in Figure 1 states the presence of concept A.
We know from the semantics of presence and the taxonomy
that the presence of C is implied by the presence of A.
However, concept C does not appear explicitly in the dataset.
Thus in our setting, one could argue that the datasets do not
strictly adhere to some source schema constraints.

If, on the other hand, our datasets did follow this source
schema constraint, we would have a different sort of problem.
Imagine that someone using T reported the presence of both

A and C. Given no other information, this dataset has some
ambiguity: Is the C that was reported a consequence of the A
that was reported, or was there some other instance that was
a C but not an A? Assuming that concepts A and C are not
equivalent (which may be inferred from B), we can assume
that there exist instances that are in C but not in A, i.e., C\ A
is not empty. The ambiguity in the dataset arises from the fact
that we do not know whether or not such a thing was being
reported in the dataset.

Based on these observations, we define a specificity con-
straint that states that only the most specific applicable con-
cepts should appear in datasets. This constraint is typically
satisfied in ecology and biodiversity datasets, and often ap-
pears in data collection best practices documents [14]. One
ramification of this constraint is that it may not be possible to
derive a single merged dataset that adheres to the specificity
constraint. As shown in [15], it may be necessary to provide
multiple possible data merges that adhere to the constraint. If,
however, a user desires only one merged dataset, we will need
to provide a best-effort merge which is as specific as possible.

C. Leveraging the Data Exchange Setting

Although there are some potential mismatches between our
setting and that of traditional data exchange, we can still use
the machinery of data exchange to help solve the problem of
finding the best-effort merge. The following section sketches
out this process.

II. APPROACH

The introduction described the best-effort merge of two
taxonomically organized datasets. Several parts of the process
for creating this merge need specification. These include (i)
describing how a dataset is translated into a source instance,
(i1) determining the source schema, (iii) determining the tar-
get schema constraints X;, (iv) deriving the source-to-target
dependencies X, and (v), describing how the target instance
calculated using data exchange is translated into a dataset that
satisfies the specificity constraint.

A. A Simple First Attempt

A first, straightforward translation is to take all concepts
C in the input taxonomies T, T, and view them as a unary
relations C(x) of the source schema S, and consider concepts
C’ of the merged taxonomy T3 as relations C'(x) of the target
schema T.* For presence/absence datasets in their most basic
form, we can only state that a concept C is present or absent.
We model this via facts of the form C(P) and C(N), representing
that some instance of concept C was (or wasn’t) observed.

1) Translating Taxonomies to Schemas: The next question
is how to represent the taxonomy constraints. Using RCC-5,
for any two non-empty sets A, B, exactly one of the following
relations must hold: A=B, ACB, ADB, A@B, or A!B.
Proper part (C) and overlaps (&) were described in the
introduction. Identity (A = B) is defined as Vx: A(x) < B(x).

4Equivalent concepts in the input taxonomies Ty, T, are replaced by new
concept names in T3, denoting the equivalence class [6].
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The last relation (A!B) refers to disjointness and can be
represented as —3x : A(x) A B(x). Identity and proper part
constraints can be approximated by the following constraints:

A=B:A(P) — B(P), A(N) « B(N)
ACB:A(P) —B(P), B(N) — A(N)

These formulas describe integrity constraints on a schema
S. The first states that if A =B in the taxonomy, then A(P) € [
iff B(P) € 1, and A(N) € I iff B(N) € 1. The second constraint
states that if A C B in the taxonomy, then if taxon A has been
reported as present in the dataset, then taxon B must also be
present. In addition, if B has been reported as not present
in the dataset, then A must also be reported as not present.
Note that this is essentially an encoding in propositional logic,
and that some information is lost in the process. For example,
the disjointness relation does not constrain the schema in our
case; even though A and B are disjoint, examples of each
may be observed. Given this simple translation of concepts
into relations, the partially overlaps relation does not translate
into an integrity constraint.

2) Translating Datasets into Instances: Datasets rarely
contain information about all the nodes in the accompanying
taxonomy. However, given a source schema as translated
above, a dataset may be used to populate much of the schema.
For example, if A C B, and B C C, and the dataset contains
(A, P), we can assert the presence of B and C. Similarly,
if the dataset contains (C,N), we assert A(N) and B(N). This
information can be used to determine inconsistent datasets. If
a relation contains both P and N tuples, it is inconsistent.

3) Calculating Xy In this simple scenario, X is given by
the constraints above.

4) Translating Instances Back into Datasets: Once the data
exchange setting is constructed, we can calculate a merged
dataset by taking the source datasets, representing them as in-
stances of the source schema, and following the dependencies
to construct a target instance. To finish the process, that target
instance should be translated back into a dataset.

As discussed in the introduction, we want to avoid ambi-
guity in our datasets. Unfortunately, the target instance as it
stands will almost always be ambiguous. Even if there is only
one dataset, with one observation “A is present”, if A C B,
then the target instance calculated via data exchange will have
A(P) and B(P). The B(P) is ambiguous because, once it is taken
out of the context of the data exchange setting, it is unclear
whether that B(P) is due to the A(P) or if there is some other
B present which is not also an A.

One potential solution would be to only include the leaves of
the merged taxonomy when translating from a target instance
to a target dataset. However, in many cases this approach
would lead to incorrect results. For example, consider two
taxonomies of one concept each, A in T and B in T,. Dataset
D, registered to T reports the presence of A, dataset D,
registered to T, reports the presence of B. The target instance
contains A(P) and B(P), but converting these into a target
dataset that only contains A would be incorrect. In particular,
it may be the case that something that was a B but not an A

was present.

5) Problems with the First Attempt: For data exchange to be
useful, the target instance we generate either must adhere to the
specificity constraint, or it must at least provide us with enough
information to derive a dataset that adheres to the constraint.

There are many problems with the naive translation above,
e.g., it is hard or impossible to enforce the specificity con-
straint when translating the target instance back into a dataset.
The key difficulty in enforcing the constraint is that statements
like “something that is a B but not also an A” cannot be
represented if we restrict ourselves to discussing concepts from
the taxonomies. Instead, to unambiguously describe something
that is a B but not an A requires an enriched vocabulary.

B. Combined Concepts and Disjunctive Constraints

Aligning taxonomies provides additional information about
the concepts in each taxonomy. For example, if concept A
in one taxonomy overlaps with concept B in the second, we
move from having two concepts (A and B) to having three
(As that are Bs, As that are not Bs and Bs that are not As).
Restricting our vocabulary to the original concepts A and B
limits our ability to be specific about the outcome of a data
merge. To overcome this limitation, we introduce the notion
of combined concepts.

A combined concept is defined over the given taxonomy
concepts using conjunction and negation. For example, two
concepts A, B may be combined to create four new concepts,
represented as AB, AB, AB and AB. Given certain taxonomic
constraints, some combined concepts are unsatisfiable. If A
and B are concepts of a taxonomy in which A C B, the
combined concept AB can have no instances. Algorithms for
computing the satisfiable combined concepts for a taxonomy
are provided in [15]. Allowing the use of combined concepts
in the target schema permits us to use the specificity added
by the taxonomy alignments. For example, if A overlaps B,
the combined concepts are AB, AB, AB, and the source to the
target dependencies are:

A(P) — AB(P) V AB(P
A(N) — AB(N) A AB(N
B(P) — EB(P) V AB(P
B(N) — AB(N) A AB(N

AB
AB

O —

These disjunctive dependencies result in a target instance
that contains uncertainty [2]. We can query this target instance,
e.g., to determine if each combined concept’s presence or
absence value is certainly known or not. Alternatively, we
can materialize all possible instances. Tables I(a) and (b), for
example, show two of the five possible merges> resulting from
Figure 1. Each of the concepts described in Tables I(a) and
(b) is a most specific applicable concept: it specifies whether
or not it is subsumed by each of the original concepts. For
example, the concept ABCD is subsumed by concepts A and
C, but not subsumed by concept B or D.

SThere are five possible merges under the assumptions that concepts A and
B are disjoint and that there are no instances in concept C that are not in
either A or B.
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TABLEI
TwO POSSIBLE MERGES (A), (B) OF THE DATASETS IN FIGURE 1. A SINGLE
BEST-EFFORT MERGE IS SHOWN IN (C).

Concept ‘ o ‘ l Concept ‘ o ‘
ABCD N ABCD P
C
ABCD N ABCD N
ABCD | N ABCD | P ©
@ ®)

C. Constructing the Most Specific Single World

The target instance follows a schema derived from the
merged taxonomies. If the target instance contains uncertainty,
(e.g., instances of the combined concept ABCD may or may
not be present) we do not have a single most specific world.
One way to get a most specific single world is to alter the
merged taxonomy by removing concepts that contribute to
the uncertainty. If uncertainty arises when internal (non-leaf)
concepts are included in the target dataset, we can address
this issue by removing all the leaves under the problematic
internal concepts. This in effect makes the merged taxonomy
less specific, but makes the dataset unambiguous in the context
of the less specific taxonomy.

Table I(c) provides an example of a single best-effort merge
for the scenario in Figure 1.

III. CONCLUSION AND SOME CHALLENGES

This paper provides a first, very rough sketch of how to
leverage data exchange to merge datasets that draw their
concepts from taxonomies. Fleshing the process out more
completely and giving it a formal foundation is the first priority
in future work on the problem. Assuming that the process
described here can be used to create a best-effort merge,
further issues arise:

A. Disjunctive Relations

In this paper we have restricted our articulation relations
to the basic five set relations. RCC-5 also encodes disjunctive
relations, e.g., (A C B)V (A =B) is the standard definition of
“isa”. There are 32 disjunctions over the basic five relations.

B. Restricting the Target Instance to Original Concept Terms

An effect of our move to combined concepts is that the
resulting merged dataset will most likely use a vocabulary
different from the vocabulary used in the original datasets.
This calls for a second translation from the calculated dataset
to one using only terms from the original taxonomies.

C. Translation from the Target Instance to a Dataset

It remains to be seen how to derive from the target instance
a merged dataset that adheres to the specificity constraint, and
how to encode the constraint as dependencies on the target
instance.
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