
Parallelizing XML Data-Streaming Workflows via Map-Reduce

Daniel Zinn∗,a, Shawn Bowersb,c, Sven Köhlerb, Bertram Ludäschera,b

aDept. of Computer Science, UC Davis
bUC Davis Genome Center, UC Davis

cDept. of Computer Science, Gonzaga University

Abstract

In prior work it has been shown that the design of scientific workflows can benefit from a collection-oriented mod-
eling paradigm which views scientific workflows as pipelines of XML stream processors. In this paper, we present
approaches for exploiting data parallelism in XML processing pipelines through novel compilation strategies to the
Map-Reduce framework. Pipelines in our approach consist of sequences of processing steps that receive XML-
structured data and produce, often through calls to “black-box” (scientific) functions, modified (i.e., updated) XML
structures. Our main contributions are (i) the development of a set of strategies for compiling scientific workflows,
modeled as XML process pipelines, into parallel MapReduce networks, and (ii) a discussion of their advantages and
trade-offs, based on a thorough experimental evaluation of the various translation strategies. Our evaluation uses the
Hadoop MapReduce system as an implementation platform. Our results show that execution times of XML work-
flow pipelines can be significantly reduced using our compilation strategies. These efficiency gains, together with the
benefits of MapReduce (e.g., fault tolerance) make our approach ideal for executing large-scale, compute-intensive
XML-based scientific workflows.

1. Introduction

Scientific data analysis often requires the integration of multiple domain-specific tools and specialized applications
for data processing. The use of these tools within an analysis is typically automated through scripts and, more recently,
through scientific workflow systems [1, 2, 3], resulting in data-driven and often compute-intensive processing pipelines
that can be executed to generate new data products or to reproduce and validate prior results.

XML and XML-like tree structures are often used to organize and maintain collections of data, and so it is natural
to devise data-driven processing pipelines (e.g., scientific workflows) that work over nested data (XML). A number
of such approaches have recently been developed, e.g., within the web [4, 5, 6], scientific workflow [7, 8, 9], and
database communities [10, 11, 12]. These approaches provide mechanisms to create complex pipelines from indi-
vidual computation steps that access and transform XML data, where each step converts input data into new data
products to be consumed by later steps. Additionally, pipelines often include steps that are applied only to portions
of their input structures (leaving the remaining portions unchanged), in which case steps can be seen as performing
specialized XML update operations [7, 13, 14]. The components implementing these computation steps often employ
techniques from XML processing (e.g., XPath, XQuery, XSLT), and call built-in functions or external applications
to perform “scientifically meaningful” computations (e.g., DNA sequence alignment, image processing, or similarly
specialized algorithms).

Many of the above approaches employ pipeline parallelism to more efficiently execute pipelines by streaming
XML data through components, thus allowing different steps within a pipeline to work concurrently over an XML
stream. However, these approaches largely ignore data parallelism, which can significantly reduce pipeline execution
time by allowing the same step to be executed in parallel over distinct subcollections of data.

∗Corresponding author
Email addresses: dzinn@ucdavis.edu (Daniel Zinn), sbowers@ucdavis.edu (Shawn Bowers), svkoehler@ucdavis.edu (Sven

Köhler), ludaesch@ucdavis.edu (Bertram Ludäscher)

Preprint submitted to Elsevier August 20, 2009

//C //D//B //C //BXML Pipeline:

//B: AA#B = 4
#C = 3

withA

B1 B2 B4

D1
... D100 D1 D100

...
C1 C2 C3

B3

C1 C2 C3
...

......

Data:
B

CCC
D...D

B
CCC

D...D
...

B

D D...

B
CCC
D D...
...

...B ...B

Figure 1: XML Pipeline (top), where each step is labeled with
its scope of work (e.g., //B, //C), shown with sample input data
(bottom left) and data partitioning for Steps 1 and 5 (bottom right).

In this paper, we present approaches that utilize Map-
Reduce [15] to facilitate data-parallel computation over
XML. For example, consider the simple XML process-
ing pipeline shown in Fig. 1. This pipeline consists of
five steps, each of which (i) receives XML structures from
previous steps, and (ii) works over specific XML frag-
ments (subtrees) within these structures. These fragments
are determined through XPath expressions that specify the
“scope” of a step. Steps are invoked over each scope match
(i.e., matching XPath fragment), and steps can perform ar-
bitrary modifications to matched fragments using general
XML processing techniques (e.g., XQuery, XSLT). The modifications made by steps often involve calling built-in
(scientific) functions whose outputs are added within the matched fragment, or used to replace existing parts of the
fragment. The result is a modified (i.e., updated) XML structure that is passed to subsequent steps. As an example,
the first step of Fig. 1 has the scope “//B”, allowing it to perform arbitrary changes on “B”-rooted subtrees, i.e., new
data items or subtrees can be inserted anywhere below the “B” node. However, for the middle step with scope “//D”,
changes may only be performed at the leaves of the given structure shown in the bottom-left of Fig. 1.

To exploit data parallelism, we map scope matches (fragments) to “work-pieces” that are then processed in parallel
by MapReduce. The bottom-right of Fig. 1 shows how the data is partitioned for the scope “//B” as used in Steps 1
and 5. A naive adoption of this approach, however, can lead to bottlenecks in the splitting and regrouping phase of the
parallel MapReduce execution. For example, from Step 1 to 2 the subtrees shown at the bottom right of Fig. 1 must be
partitioned further. Grouping all work-pieces together again to then re-split for the second task is clearly inefficient.
Furthermore, from Step 3 to 4, the “D”-rooted trees must be re-grouped to form trees rooted at “C”. Performing this
grouping in a single global task also adds an unnecessary bottleneck because all required regroupings could be done
in parallel for each “C”-rooted subtree.

Contributions. We describe and evaluate three novel strategies—Naive, XMLFS, and Parallel—for executing XML
processing pipelines via the MapReduce framework. The Naive strategy deploys a simple step-wise splitting as out-
lined above. The XMLFS strategy maps XML data into a distributed file system to eliminate the grouping bottleneck
of the Naive strategy. The Parallel strategy further utilizes existing splits to re-split the data in parallel, thereby
fully exploiting the grouping and sorting facilities of MapReduce. In general, each of these strategies offers distinct
approaches for applying MapReduce to data-parallel processing of XML.

We also present a thorough experimental evaluation of our strategies. Our experiments show a twenty-fold speedup
(with 30 hosts) in comparison to a serial execution, even when the basic Naive strategy is used. We also show that
our Parallel approach significantly outperforms Naive and XMLFS for large data and when the cost for splitting and
grouping becomes substantial. We consider a wide range of factors in our experiments—including the number of
mapper tasks, the size of data and the XML nesting structure, and different computational load patterns—and we
show how these factors influence overall processing time using our strategies.

Outline. The rest of the paper is organized as follows. In Section 2 we describe the MapReduce paradigm and an
example that demonstrates the features utilized in our strategies. In Section 3 we describe a framework for XML
processing pipelines, introduce important notions for their parallel execution, and give several pipeline examples.
Section 4 presents our three parallelization strategies as well as their advantages and trade-offs. In Section 5 we
present our experimental evaluation. We discuss related work and conclude in Section 6.

2. Preliminaries: MapReduce

MapReduce [15] is a software framework for writing parallel programs. Unlike with PVM or MPI, where the
programmer is given the choice of how different processes communicate with each other to achieve a common task,
MapReduce provides a fixed programming scheme. A programmer employing the MapReduce framework implements
map and reduce functions, and the MapReduce library carries out the execution of these functions over corresponding
input data. While restricting the freedom of how processes communicate with each other, the MapReduce framework
is able to automate many of the details that must be considered when writing parallel programs, e.g., check-pointing,

2

execution monitoring, distributed deployment, and restarting individual tasks. Furthermore, MapReduce implemen-
tations usually supply their own distributed file systems that provide a scalable mechanism for storing large amounts
of data.

Programming model. Writing an application using MapReduce mainly requires designing a map function and a
reduce function together with the data types they operate on. Map and reduce implement the following signatures

map :: (K1,V1) → [(K2,V2)]
reduce :: (K2, [V2]) → [(K3,V3)]

where all Ki and Vi are user-defined data types. The map function transforms a key-value pair (short kv-pair) into
a list of kv-pairs (possibly) with different types. The overall input of a MapReduction is a (typically large) list of
kv-pairs of type (K1,V1). Each of these pairs is supplied as a parameter to a map call. Here, the user-defined map
function can generate a (possibly empty) list of new (K2,V2) pairs. All (K2,V2) pairs output by the mapper will be
grouped according to their keys. Then, for each distinct key the user-defined reduce function is called over the values
associated to the key. In each invocation of reduce the user can output a (possibly empty) list of kv-pairs of the
user-defined type (K3,V3).

The MapReduce framework divides the overall input data into kv-pairs, and splits this potentially large list into
smaller lists (so-called input splits). The details of generating kv-pairs (and input splits) can also be specified by the
user via a custom split function. After kv-pairs are created and partitioned into input splits, the framework will use
one separate map process for each input split. Map processes are typically spawned on different machines to leverage
parallel resources. Similarly, multiple reduce processes can be configured to process in parallel different distinct keys
output by the map processes.

Example. Assume we want to generate a histogram and an inverted index of words for a large number of text files
(e.g., the works of Shakespeare), where the inverted index is represented as a table with columns word, count, and
locations. For each distinct word in the input data there should be exactly one row in the table containing the word,
how often it appears in the data, and a list of locations that specify where the words were found. To solve this problem
using MapReduce, we design the type K1 to contain a filename as well as a line number (to specify a location), and the
type V1 to hold the corresponding line of text of the file. When given a (location, text) pair, map emits (word, location)
pairs for each word inside the current line of text. The MapReduce framework will then group all output data by
words, and call the reduce function over each word and corresponding list of locations to count the number of word
occurrences. Reduce then emits the accumulated data (count, List of locations) for each processed word, i.e., the data
structure V3 will contain the required word count and the list of locations.

The MapReduce framework can additionally sort values prior to passing them to the reduce function. The imple-
mentation of secondary sorting depends on the particular MapReduce framework. For example, in hadoop [16] it is
possible to define custom comparators for keys K2 to determine the initial grouping as well as the order of values
given to reduce calls. In our example above, we could design the key K2 to not only contain the word but also the
location. We would define the “grouping” comparator to only compare the word part of the key, while the “sorting”
comparator would ensure that all locations passed will be sorted by filename and line number. The reduce function
will then receive all values of type location in sorted order, allowing sorted lists of locations to be easily created.

In general, MapReduce provides a robust and scalable framework for executing parallel programs that can be
expressed as combinations of map and reduce functions. To use MapReduce for parallel execution of XML processing
pipelines, it is necessary to design data structures for keys and values as well as to implement the map and reduce
functions. More complex computations can also make use of custom group and sort comparators as well as input
splits.

3. Framework

The general idea behind transforming XML processing pipelines to MapReduce is to use map processes to paral-
lelize the execution of each pipeline task according to the task’s scope expression. For each scope match the necessary
input data is provided to the map tasks, and after all map calls have executed, the results are further processed to form

3

either the appropriate input structures for the next task in the pipeline or the overall output data. For example, con-
sider again the pipeline from Fig. 1. The partitioning and re-grouping of XML data throughout the pipeline execution
is shown in Fig. 2: data in the first row is split into pieces such that at most one complete “B” subtree is in every
fragment, which is then processed in parallel with the other fragments. Then, further splits occur for scope “C” and
“D” respectively. Data is later re-grouped to ensure that all elements corresponding to a scope match are available as
a single fragment.

In the following we define our data model and assumptions concerning XML processing pipelines. We also
characterize the operations that may be performed on single fragments within map calls (i.e., by pipeline tasks) to
guarantee safe parallel execution.

3.1. XML Processing Pipelines

A[B[C[D[] . . . D[]]C . . . C[D[] . . . D[]]C]B . . . B[. . .]B]A

A[B[C[D[] . . . D[]]C . . . C[D[] . . . D[]]C]B . . . B[. . .]B]A

A[B[C[D[] . . . D[]]C . . . C[D[] . . . D[]]C]B . . . B[. . .]B]A

A[B[C[D[] . . . D[]]C . . . C[D[] . . . D[]]C]B . . . B[. . .]B]A

A[B[C[D[] . . . D[]]C . . . C[D[] . . . D[]]C]B . . . B[. . .]B]A

A[B[C[D[] . . . D[]]C . . . C[D[] . . . D[]]C]B . . . B[. . .]B]A

A[B[C[D[] . . . D[]]C . . . C[D[] . . . D[]]C]B . . . B[. . .]B]A
out

in

S

S

S

G

G

G

//B

//C

//D

//C

//B

Figure 2: Splits and groups for Parallel execution. For each step in the pipeline the data
is partitioned such that all data for one scope match is inside one fragment while each
fragment holds at most one match.

We assume XML procesing pipe-
lines that adopt the standard XML data
model corresponding to labeled ordered
trees represented as sequences of tokens;
namely, opening tags “T[”, closing tags
“]T”, and data nodes “#d ”. Data nodes
typically represent data products whose
specific format is understood by the soft-
ware components implementing pipeline
tasks, but not by the XML framework it-
self, which treats data as opaque CData

nodes. For instance, data nodes may
represent binary data objects (such as
images) or simple text-based data (e.g.,
DNA sequence alignments).

Pipeline tasks typically call “scien-
tific” functions that receive data nodes
as input and produce data nodes as out-
put. In addition, tasks are annotated with
scopes that define where in the overall XML structure input data is taken from and output data is placed. Each scope
specifies XML fragments within the input structure that represent the context of a task. Pipeline tasks may insert data
(including XML tree data) anywhere within their corresponding context fragments or as siblings to the fragments, and
remove data or complete subtrees anywhere within their fragments (including removing the fragments themselves). It
is often the case that a given XML structure will contain multiple matching fragments for a task. In this case, the task
is executed over each such match. We assume tasks do not maintain state between executions, thus allowing them to
be safely executed in parallel over a given XML structure via the MapReduce framework.

More formally, a pipeline consists of a list of tasks T each of which updates an XML structure X to form a new
structure X′. Further, T = (σ,A) where the scope σ is a (simple) qualifier-free XPath expression consisting of child
(/) and descendent-or-self (//) axes, andA is a function over XML structures.

A subtree si in an input XML structure X is a scope match if σ(X) selects the root node of si. For nested scope
matches, only the highest-level match in X is considered—a common restriction (e.g., [17]) for avoiding nested
executions. Formally, σ selects n non-overlapping subtrees si from X:

σ(X) = {s1, . . . , sn}.

Then, the functionA is called on each of these subtrees to produce a new XML fragment, i.e.:

for each si : s′i = A(si).

The output document X′ is then formed by replacing all si subtrees in X by the respective outputs s′i :

X′ = X[s1 → s′1, s2 → s′2, . . .].
4

We require that A be a function in the mathematical sense, i.e., a result s′i only depends on its corresponding input
si. This implies that s′i can be computed from si independently from data inside other fragments s j or completely
non-matched data in X.1

3.2. Operations on Token Lists
During pipeline execution we represent XML data as a sequence (i.e., list) of tokens of the form T[,]T , and

#d . By convention, we use capital letters to denote token lists and lowercase letters to denote trees and (ordered)
forests2. Token lists are partitioned into fragments that are sent to map calls for concurrent processing. Below we
characterize the changes the map calls may perform on fragments to avoid jeopardizing overall data integrity. Note
that the proposed rules can be followed locally and thus eliminate the need for more involved locking mechanisms.

Definition (Balanced Token List). Given the following rules to modify token lists:

A #d B ⇒ A B A, B ∈ Token List (1)
A X[]X B ⇒ A B A, B ∈ Token List (2)

rule (1) deletes any data node whereas (2) deletes matching Open and Close nodes if they are next to each other within
a sequence and have matching labels. As usual, we write T ⇒∗ T ′ if there exists a sequence of token lists Ti such that
T = T1 ⇒ T2 ⇒ · · · ⇒ Tn = T ′. A token list T is balanced if it can be reduced to the empty list, i.e., T ⇒∗ [].

Note that⇒∗ is normalizing, i.e., if T ⇒∗ [] and T ⇒∗ T ′ then T ′ ⇒∗ []. This means that for a balanced list T ,
applying deletion rules (1) and (2) in any order will terminate in the empty list (by induction on list length). Also note
that an XML forest naturally corresponds to a balanced token list and vice versa.

As described above, we want calls to map to compute new forests s′i from existing trees si. In particular, s′i can
be computed by performing tree insertion and tree deletion operations in an arbitrary order on si. The following
operations on token lists correspond to these allowed operations on trees.

Observation (Safe insertions). Inserting a balanced token list I at any position into a balanced token list T corre-
sponds to inserting the forest i into the forest t (where forests i and t correspond to token lists I and T , respectively).
In particular this operation results in a balanced token list T ′. We call such an insertion a safe insertion.
Proof: The result T ′ is trivially a balanced token list, since the newly inserted balanced fragment I can be deleted
from T ′ via the deletion rules given above, resulting in T , which is balanced. Furthermore, the balanced token list I
corresponds to a forest i. Since any location between two tokens in the list T corresponds to a position in the forest t,
a safe insertion will insert i at this position. �
Note that insertions which simply maintain the “balance” of a sequence, but are not safe, can change ancestors of
already existing nodes. Consider the case of inserting the unbalanced fragment “]A A[” into the middle of the balanced
token list “A[#d #d]A”. This insertion will result in the balanced list “A[#d]A A[#d]A”. However, the second
#d token has changed parent nodes without explicitly being touched.

Observation (Safe deletions). Removing a consecutive and balanced token list D from a balanced token list T results
in a balanced token list T ′. This operation corresponds to deleting the forest d from t. We call such a deletion a safe
deletion.
Proof: T ′ is trivially balanced since “⇒” is normalizing. �
Corollary 1 (Safe operations carry over to fragments of token lists). Viewing token-list fragments as parts of the
total (balanced) token list, we can perform safe insertions and safe deletions to perform the desired operations inside
the scope of a pipeline task.

Corollary (1) ensures that map calls can change their fragments by performing safe insertions and deletions without
interfering with the data of other map calls. Moreover, since the complete scope is inside the fragment received by
the map call, each map call is able to delete its scope match, or to perform any “localized” operations on it using all
the data inside its scope.

1In essence, we perform a “map A” on the list of scope matches with map being the standard map function of functional programming languages.
We thus require thatA be a function to parallelizeA invocations.

2Although the term hedge seems more appropriate as it implies an order to the list of trees, we conform to most existing literature and use the
term forest here to denote an ordered list of trees.

5

3.3. XML-Pipeline Examples

A
B B B

C C C C
...

d’d’d’d’

A
B B B

C C C C
...

d d d d

A
B

C

A
B B B

C
d’

C C CC
d1d2d3d4d’

CC
d’...
CC

d4

...
A

B B B
A

B B B
d•d• d•

colorize montage

blur
σ : //C

colorize
σ : //C

montage
σ : //B

blur

Dataview:

Pipeline with read scopes:

Figure 3: Image transformation pipeline. All images are blurred; then from each, four
new images are created by coloring; and finally a big montage is created from all images
below each “B”.

In addition to the simple pipeline
introduced in Fig. 1, we also consider
a common image processing pipeline
shown in Fig. 3. This pipeline is similar
to a number of (more complicated) scien-
tific workflows that perform image pro-
cessing, e.g., in functional Magnetic Res-
onance Imaging (fMRI) [18] and plasma-
fusion data analysis [19]. The pipe-
line employs the convert and montage
tools from the Image-Magick [20] suite
to process multiple images organized ac-
cording to nested XML collections. As
shown in Fig. 3, a top-level “A” col-
lection contains several “B” collections,
each of which contains several “C” col-
lections with an image d inside. The
first step of the pipeline blurs the images
(via the “convert -blur” command).
Since this operation is performed on each image separately, we define the task’s scope σ using the XPath expres-
sion //C and its corresponding function A such that it replaces the image within its scope with a modified image
resulting from invoking the blur operation. The next step in the pipeline creates a series of four colorized images from
each blurred image d’ using the command “convert -modulate 100,100,i ” with 4 different values for i . The
last step of the pipeline combines all images under one “B” collection into a single large image using the montage
tool. The scope σ of this last task is //B since all images inside a “B”-labeled tree are input to the montage operation.
Here the framework groups previously split fragments to provide the complete “B” subtree to the montage task.

4. Parallelization Strategies

We consider three strategies, Naive, XMLFS and Parallel, whose main differences are shown in Fig. 4. These
strategies use variations of key-value data structures as well as split, map, and reduce operations, and build upon each
other to address various shortcomings that arrise in large-scale and compute-intensive processing of nested data.

4.1. Naive Strategy

The Naive approach corresponds to a straightforward application of MapReduce over XML data. As shown in
Fig. 4, we cut XML token sequences into pieces for the map calls, perform the task’s operation A on its scope, and
finally merge the result in the reduce step of the MapReduction to form the final output3. The Naive approach uses
the following data structures for keys and values.

Key: Integer
Token := XOpen | XClose | Data

Value: TList := List of Token

For each task in an XML pipeline, we create a MapReduction with split, map, and reduce as shown in Fig. 5. From
an XML structure, SplitNaive creates a kv-pair for each match of the task’s scope: each pair comprises an Integer as
key, and a TList as value.

To decide if a current token opens a new scope in line 4 of Fig. 5, we use a straightforward technique to convert the
qualifier-free, simple XPath-expression σ into a deterministic finite-state automaton (DFA) reading strings of opening

3This parallelization is a form of a simple scatter and gather pattern.

6

XMLFS

in
pu

t
in

X
M

L
F

S

S

ou
tp

ut
in

X
M

L
F

S

MapSplit

ha
do

op
fil

e
sy

st
em

Naive Parallel

on
e

in
pu

t
fil

e

S

on
e

ou
tp

ut
fil

e

Map ReduceSplit

G

sp
lit

fo
r

ta
sk

i

sp
lit

fo
r

ta
sk

i
+

1

G

G

G

G

G

G

w
it

h
na

m
in

g
sc

he
m

e

Reduce Map+Split Reduce

S

S

S

S

S

A

A A

A

A

A

A

A

A

A
A

A

A

A

A

AA A

Figure 4: Processes and dataflow for the three parallelization strategies.

tokens. The DFA accepts when the read string conforms to σ. Using a stack of DFA states, we keep track of the
current open tags. Here, we push the current state for an open token and reset the DFA to the state popped from the
stack when a closing token is read. To prevent nested scope matches, we simply go into a non-acceppting state with
self-loop after we encounter a match. Note that closing the match will “pop” the automaton back to the state before
the match. We are able to use this simple and efficient approach for streaming token lists because of the simplicity
of the XPath fragment in which scopes are expressed.4 Considering more complex fragments of XPath together with
available streaming algorithms for them, such as those in [21, 22], is beyond the scope of this paper.

1 SplitNaive: TList input, XPath σ→ [(Integer, TList)]
int i := 0; TList splitOut := []

3 FOREACH token IN input DO
IF (token opens new scope match with σ) AND

5 (splitOut , []) THEN
EMIT (i, splitOut) // one split for each scope match

7 i++; splitOut := []
splitOut.append(token)

9 EMIT (i, splitOut)

11 MapNaive: Integer s, TList val→ [(Integer, TList)]
val’ :=A(val) // execute pipeline task

13 EMIT (s, val’)

15 ReduceNaive: Integer s, [TList] vals→ [(Integer,TList)]
TList output := []

17 WHILE vals.notEmpty() DO
output.append(vals.getValue()) // collapse to single value

19 EMIT (0, output)

Figure 5: Split, Map, Reduce for Naive strategy.

The first pair constructed by SplitNaive con-
tains all XML tokens before the first match, and
each consecutive pair contains the matching data,
possibly followed by non-matching data. Each
pair is then processed in MapNaive. Then, Re-
duceNaive merges all data fragments back into the
final XML structure. Since our grouping com-
parator always returns “equal”, the one reduce task
will receive all output from the mappers; also the
fragments will be received in document order be-
cause the MapReduce framework will sort the val-
ues based on the key, which is increasing in docu-
ment order. The output structure can now be used
as input data for another MapReduce that executes
the next step in the pipeline.

Shortcomings of the Naive Strategy
The major shortcoming of the Naive approach

is that although data is processed in parallel by
calls to map, both splitting and grouping token lists
is performed by a single task. Split and reduce can
thus easily become a bottleneck for the execution
of the pipeline.

4In general, this fragment is sufficient for modeling many scientific applications and workflows.

7

4.2. XMLFS Strategy

The XMLFS strategy removes the bottleneck in the reduce phase of the Naive approach by mapping XML struc-
tures to a distributed file system (see Fig. 4). Many MapReduce implementations, including hadoop and Google’s
MapReduce, provide a distributed file system that allows efficient and fault-tolerant storage of data in the usual hi-
erarchical manner of directories and files, and this distributed file system is employed in the XMLFS approach as
follows.

Mapping XML structures to a file system. An XML document naturally corresponds to a file-system-based rep-
resentation by mapping XML nodes to directories and data nodes to files. We encode the ordering of XML data by
pre-pending the XML-labels with identifiers (IDs) to form directory and file names. The IDs will also naturally ensure
that no two elements in the same directory will have the same name in the file system even though they have the same
tag. Note that although we do not explicitly consider XML attributes here, we could, e.g., store them in a file with a
designated name inside the directory of the associated XML element.

Using a file system based representation of XML data has many advantages: (1) XML structures can be browsed
using standard file-system utilities. The hadoop software package, e.g., provides a web-based file-system browser for
its hadoop file system (hdfs) [23]. (2) Large amounts of XML data can easily be stored in a fault-tolerant manner.
Both hadoop-fs and the Google File System provide distributed, fault-tolerant storage. Specifically, they allow users
to specify a replication factor to control how many copies of data are maintained. (3) The file system implementation
provides a natural “access index” to the XML structure: In comparison to a naive token list representation, navigating
into a subtree t can be performed using simple directory changes without having to read all tokens corresponding to
subtrees before t. (4) Applications can access the “distributed” XML representation in parallel, assuming that changes
to the tree and data are made at different locations. In particular, pipeline steps can write their output data s′i in parallel.

XMLFS-Write. XMLFS adapts the Naive approach to remove its bottleneck in the reduce phase. Instead of merging
the data into a large XML structure, we let each task write its modified data s′i directly into the distributed file system.
Since we do not need to explicitly group token lists together to form bigger fragments, we can perform this operation
directly in the map calls. This approach removes the overhead of shuffling data between map and reduce calls as well
as the overhead of invoking reduce steps. In particular, the XMLFS strategy does not use the grouping and sorting
feature of the MapReduce framework since each task is implemented directly within the map function.

In XMLFS, the file system layer performs an implicit grouping as opposed to the explicit grouping in the Naive
reduce function. When map calls write the processed XML token list T to the file system, the current path p from the
XML root to the first element in T needs to be available since the data in T will be stored under the path p in the file
system. We encode this information as a leading path into the key. IDs for maintaining order among siblings must
also be available. Since map calls may not communicate with each other, the decisions about the IDs must be purely
based on the received keys and values, and the modifications performed by a task’s operation A. Unfortunately, the
received token lists are not completely independent: An opening token in one fragment might be closed only in one
of the following fragments. Data that is inside such a fragment must be stored under the same directory on the file
system by each involved map call independently. It is therefore essential for data integrity that all map calls use the
same IDs for encoding the path from the document root to the current XML data. We now make these concepts more
clear, stating requirements for IDs in general, as well as requirements for ID handling in split and map functions.

Requirements for Token-Identifiers (IDs). The following requirements need to be fulfilled by IDs: Compact String
Representation: We require a (relatively small) string representation of the ID to be included in the token’s filename,
since we must use the ID for storing the XML data in the distributed file system. Local Order: IDs can be used to
order and disambiguate siblings with possibly equal labels. Note that we do not require a total order: IDs only need to
be unique and ordered for nodes with the same parent. Fast comparisons: Comparing two IDs should be fast. Stable
insertions and deletions: Updates to XML structures should not effect already existing IDs. In particular, it should
be possible to insert arbitrary data between two existing tokens. It should also be possible to delete existing tokens
without changing IDs of tokens that have not been deleted.

Choice of IDs. Many different labeling schemes for XML data have been proposed; see [24] for a recent overview.
For our purposes, any scheme that fulfills the requirements stated above could be used. These include ORDPATHs
described in [25] or the DeweyID-based labels presented in [24]. However, note that many proposed ID solutions
(including the two schemes just mentioned) provide global IDs, facilitate navigation (e.g., along parent-child axes),

8

and allow testing of certain relationships between nodes (e.g., whether a node is a descendent of another node). Since
we only require local IDs, i.e., IDs that are unique only among siblings, and we do not use IDs for navigation or
testing, we adopt a conceptionally easier (though less powerful) labeling scheme in this paper. Of course, our IDs
could easily be replaced by ORDPATHs, or other approaches, if needed.

Simple decimal IDs. A natural choice for IDs are objects that form a totally ordered and dense space such as the
rational numbers. Here, we can find a new number m between any two existing numbers a and b, and thus do not
need to change a or b to insert a new number between them. Using only these numbers that have a finite decimal
representation (such as 0.1203 as opposed to 0.3 periodical 3) we would also gain a feasible string representation.
However, there is no reason to keep the base 10. We instead use max-long as a base for our IDs. Concretely, an ID
is a list of longs. The order relation is the standard lexicographical order over these lists. As a string representation
we add “.” between the single “digits”. Since one digit already has a large number of values, long lists can easily
be avoided: To achieve short lists we use a heuristic similar to the one proposed in [24] that works well in practice.
When the initial IDs for a token stream are created, instead of numbering tokens successively, we introduce a gap
between numbers (e.g., an increment of 1000). Note that since we only label nodes locally, we can accommodate
Maxlong/10005 sibling nodes with a one-“digit” ID during the initial labeling pass. With a gap of 1000, e.g., we can
also insert a large number of new tokens into existing token lists before we need to add a second “digit”. In our tests,
e.g., we never had to create an ID with more than one digit.

Splitting input data. Creating key-value pairs for the XMLFS strategy is similar to the Naive strategy with the
exception that we create and maintain IDs of XOpen and Data tokens. The XMLFS strategy uses the following data
structures for keys and values.

ID := List of Long
IDXOpen := Record{ id: ID, t: XOpen}
IDData := Record{ id: ID, t: Data}
IDToken := IDXOpen | IDData | XClose

Key: XKey := Record{ start: ID, end: ID, lp: TIDList}
Value: TIDList := List of IDToken

In the key, we use lp to include the leading path from the XML root node to the first item in the TIDList stored
in the value. As explained above, this information allows data to be written back to the file system based soley on
the information encoded in a single key-value pair. Finally, we add the IDs start and end to the key, which denote
fragment delimiters that are necessary for independently inserting data at the beginning or end of a fragment by map
calls. For example, assume we want to insert data D before the very first token A in a fragment6 f . For a newly
inserted D, we would need to choose an ID that is smaller to the ID of A. However, the ID must be larger than the ID
of the last token in the fragment that comes before f . Since the IDs form a dense space, it is not possible to know how
close the new ID D.id should be to the already existing ID of A. Instead, we use the start ID in the key, which has the
property that the last ID in the previous fragment is smaller. Thus, the newly inserted data item can be given an ID
that is in the middle of start and A.id. Similarly, we store a mid-point ID end for insertion at the end of a TIDList.7

Fig. 9 and Fig. 6 gives the algorithm for splitting input data into key-value pairs. We maintain a stack openTags
of currently open collections to keep track of the IDs in the various levels of an XML structure as we iterate over the
token list. Whenever we split the stream in fragments (line 11) we compute a mid-point of the previous Token-ID and
the current one. The mid-point is then used as an end ID for the old fragment, and will later be the start ID for the
fragment that follows. Note that we reset lastTokenID to “[0]” whenever we open a new collection since our IDs are
only local. Moreover, if we split immediately after a newly opened collection, the mid-point ID would be [500] (the
middle of [0] and the first token’s ID [1000]). It is thus possible to insert a token both at the beginning of a fragment
and at the end of the previous fragment.

5approximately 9×1015 on 32-bit systems
6The task might want to insert a modified version of its scope before the scope.
7When using ORDPATH IDs, we could exploit the so-called careting to generate an ID very close to another one. However, this technique

would increase the number of digits for each such insertion, which is generally not desired.

9

Map step for XMLFS. Like in the Naive strategy, the map function in the XMLFS approach performs a task’s
operation A on its scope matches. Similarly, safe insertions and deletions are required to ensure data integrity in
XMLFS. Whenever new data is inserted, a new ID is created that is between the IDs of neighboring sibling tokens.
If tokens are inserted as first child into a collection, the assigned ID is between [0] and the ID of the next token.
Similarly, if data is inserted as the last child of a node (i.e., the last element of a collection), then the assigned ID is
larger than the previous token. Note that when performing safe insertions and deletions only, the opening tokens that
are closed in a following fragment cannot be changed. This guarantees that the leading path, which is stored in the
key of the next fragment, will still be valid after the updates on the values. Also, XClose tokens that close collections
opened in a previous fragment cannot be altered with safe insertions and safe deletions, which ensures that following
the leading paths of fragments will maintain their integrity.

After data is processed by a map call, the token list is written to the file system. For this write operation, the
leading path in the key is used to determine the starting positions for writing tokens. Each data token is written into
the current directory using its ID to form the corresponding file name. For each XOpen token, a new directory is
created (using the token’s ID and label as a directory name) and is set as the current working directory. When an
XClose token is encountered, the current directory is changed to the parent directory.

Shortcomings of the XMLFS Strategy
1 Split: TIDList input, XPath σ, ID startID, ID endID, TIDList lp

→ [(PKey, TIDList)]
3 TIDList openTags := lp // list of currently open tags

TIDList oldOpenTags := lp // leading path
5 ID lastEnd := startID // ending ID of last fragment

ID lastTokenID := startID // ID of last token
7 TIDList splitOut := [] // accu for fragment value

FOREACH token IN input DO
9 IF (openTags / token matches scope σ) AND

(splitOut , []) THEN
11 ID newend := midPoint(lastTokenID, token.id)

key := NEW PKey(lastEnd, newend, oldOpenTags)
13 oldOpenTags := openTags

EMIT key, splitOut // output current fragment
15 lastEnd := newend; splitOut := []

splitOut.append(token);
17 IF token is IDData THEN

lastTokenID := token.id
19 IF token is IDXOpen THEN

openTags.append(token)
21 lastTokenID := [0]

IF token is Close THEN
23 lastOpenToken := openTags.removeLast()

lastTokenID := lastOpenToken.id
25 ENDFOR

key := new PKey(lastEnd, endID, oldOpenTags)
27 EMIT key, splitOut // don’t forget the last piece

Figure 6: Split for XMLFS & Parallel

Although the XMLFS approach addresses the
bottleneck of having a single reduce step for group-
ing all data, splitting is still done in a single, serial
task, which can become a bottleneck for pipeline
execution. Further, even the distributed file system
can become a bottleneck when all map calls write
their data in parallel. Often only a few (or even
only one) master-server administers the distributed
file system’s directory structure and meta data. As
the logical grouping of the XML structure is per-
formed “on the file system”, these servers might not
be able to keep up with the parallel access. Since
both the Google file system and hdfs are optimized
for handling a moderate number of large files instead
of a large number of (small) files or directories, stor-
ing all data between tasks to the file system using the
directory-to-XML mapping above can become inef-
ficient for XML structures that have many nodes and
small data tokens.

Additionally, after data has been stored in the
file system, it will be split again for further paral-
lel processing by the next pipeline task. Thus, the
file system representation must be transformed back
into TIDLists. This work seems to be unnecessary
since the previous task used a TIDList representa-
tion, which was already split for parallel process-
ing. For example, consider two consecutive tasks
that both have the same scope: Instead of storing the
TIDLists back into the file system, the first task’s map function could directly pass the data to the map function of the
second task. However, once consecutive tasks have different scopes, or substantially modify their data to introduce
new scope matches, simply passing data from one task’s map function to the next would not work. We address this
problem in the Parallel strategy defined below.

10

4.3. Parallel Strategy

The main goal of the Parallel Strategy is to perform both splitting and grouping in parallel, providing a fully
scalable solution. For this, we exploit existing partitioning of data from one task to the next while still having the
data corresponding to one scope inside a key-value pair. Imagine two consecutive tasks A and B. In case both tasks
have the same scope, the data can simply be passed from one mapper to the next if A does not introduce additional
scope matches for B, in which case we would further need to split the fragments. In case the scope of task B is a
refinement of A’s scope, i.e., A’s σ1 is a prefix of B’s σ2, A’s mapper can split its TIDList further and output multiple
key-value-pairs that correspond to B’s invocations. However, it is also possible that a following task B has a scope that
requires earlier splits to be undone, for example if task A’s scope is //A//B whereas task B’s scope is only //A, then the
fine-grained split data for A needs to be partially merged before it is presented to B’s mappers. Another example is
an unrelated regrouping: here, spliting and grouping are necessary to re-partition the data for the next scope. Even in
this situation, we want to efficiently perform the operation in parallel. We will use MapReduce’s ability of grouping
and sorting to achieve this goal. In contrast to the Naive Approach, we will not group all the data into one single
TIDList. Instead, the data is grouped into lists as they are needed by the next task. As we will show, this can be done
in parallel. We now present the necessary analysis of the scopes as well as detailed algorithms for splitting, mapping,
and reducing.

J.5
O A1[B1[D1 D2]B X2 D3]A B2[D1]B

J.5 A1[B1[J.5 A1[B1[J1.5 A1[J2.5 B2[J.5
//D A1[B1[D1 D2]B X2 D3]A B2[D1]B

J.5 A1[J.5 A1[B1[J.5 A1[B1[J1.5 A1[J2.5 J1.5 B2[J.5
I A1[B1[D1 D2]B X2 D3]A B2[D1]B

NG A1[B1[A1[B1[A1[B1[NG B2[B2[

J.5 A1[J.5 A1[J2.5 J1.5
//B A1[B1[D1 D2]B X2 D3]A B2[D1]B

Figure 7: Example of how to change fragmentation from //D to //B in parallel. Since splitting
from row two to row three is performed independently in each fragment this step can be per-
formed in the Mapper. Grouping from row three to row four is performed in parallel by the
shuffling and sorting phase of MapReduce such that the merge can be done in the Reducers,
also in parallel.

Regrouping example. Consider
an arbitrarily partitioned TIDList.
Fig. 7 shows an example in the
second row. Each rectangle cor-
responds to one key-value pair:
The value (a TIDList) is written
at the bottom of the box, whereas
the key is symbolized at the top-
left of the box. IDXOpen and
IDXData tokens are depicted with
their corresponding IDs as a sub-
script; XClose tokens do not have
an ID. For ease of presentation we
use decimal numbers to represent
IDs with the initial tokens having
consecutively numbered IDs. The
smaller text line in the top of the
boxes show the leading path lp to-
gether with the ID start. The key’s
ID end is not shown—it always
equals the start-ID of the next frag-
ment, and is a very high number for the last fragment. The first box in the second row, for example, depicts a key-value
pair with the value consisting of two XOpen tokens, each of which having the ID of 1. The leading path in the key is
empty, and the start-ID of this fragment is 0.5. Similarly, the second box represents a fragment that has as value only
a token D[with ID 1. Its leading path is A1[B1[, and the start-ID of this fragment is 0.5.

Now, consider that the split as shown in the second row of Fig. 7 is the result after the task’s actionA is performed
in the Mappers. Assume the next task has a scope of //B. In order to re-fragment an arbitrary split into another split,
two steps are performed: A split and a merge operation.

Split-Operation. Inside the mapper, each fragment (or key-value pair) is investigated whether additional splittings
are necessary to comply with the required final fragmentation. Since each fragment has the leading path, a start and
an end-ID encoded in the key, we can use algorithm Split as given in Fig. 6 to further split fragments. In Fig. 7, for
instance, each fragment in the second row is investigated if it needs further splits: The first and the fourth fragment
will be split since they each contain a token B[. If there were one fragment with many B subtrees, then it would be
split in many different key-value pairs, just like in the previous approach. Note that this split operation is performed

11

on each fragment independently from each other. We will therefore excecute Split in parallel inside the Mappers as
shown in the dataflow graph in Fig. 4 and the pseudo-code for the Mapper task in Fig. 8, line 6.

Merge-Operation. The fragments that are output by the split-Operation contain enough split-points such that at most
one scope match is in each fragment. However, it is possible that the data within one scope is spread over multiple,
neighboring fragments. In Fig. 7, for example, the first B-subtree is spread over three fragments (fragment 2, 3, and
4). We use MapReduce’s ability to group key-value pairs to merge the correct fragments in a Reduce step. For this,
we put additional GroupBy information into the key. In particular, the key and value data structures for the parallel
Strategy are as follows:

GroupBy := Record{ group: Bool, gpath: TIDList }
Key: PKey := Record of XKey and GroupBy
Value: TIDList := List of IDToken

1 MapParallel: SKey key, TIDList val→ [(SKey, TIDList)]
IF (key.lp / val[0]) matches scope σ

3 val’ :=A(val)
List of (SKey, TIDList) outlist;

5 // split according to the scope σ′ of the following step
outlist := Split(val’, σ′, key.start, key.end, key.lp)

7 FOREACH (key,fragment) ∈ outlist DO
EMIT(key, fragment);

9

ReduceParallel: SKey key, [TIDList] vs→ [(SKey, TIDList)]
11 TIDList out := []

WHILE (val := vs.next())
13 out.append(val);

key.end := val.end // set end in key to end of last fragment
15 EMIT(key, out)

Figure 8: Map and Reduce for Parallel

Fragments, that do not contain tokens that are
within scope simply set the group-flag to false and
will thus not be grouped with other fragments by
the MapReduce framework. In contrast, fragments
that contain relevant matching tokens will have the
group flag set. For these, we use gpath to store the
path to the node matching the scope. Since there is
at most one scope-match within one fragment (en-
sured by the previous split-operation) there will be
exacltly one of these paths. In Fig. 7, we depicted
this part of the key in the row between the inter-
mediary fragments I and the final fragments split
according to //B: The first fragment, not contain-
ing any token below the scope //B, is not going to
be grouped with any other fragment. The follow-
ing three fragments all contain A1[B1[as gpath,
and will thus be presented to a single Reducer task,
which will in turn assemble the fragments back together (pseudo-code is given in Fig. 8. The output will be a single
key-value pair containing all tokens below the node B as required.

1 SplitXMLFS: TIDList input, XPath σ→ [(PKey,TIDList)]
CALL Split(input, σ, [0], [maxlong], [])

3

MapXMLFS: PKey key, TIDList val→ [(PKey, TIDList)]
5 IF (key.lp / val[0]) matches scope σ

val’ :=A(val)
7 Store val’ in distributed file system

9 // No Reduce necessary, Map stores data

Figure 9: Split and Map for XMLFS

Order of fragments. The IDs inside the TokenList
of the leading path lp together with the ID start in a
fragment’s key can be used to order all fragments in
document order. Since IDs are unique and increasing
within one level of the XML data, the list of IDs on
the path leading from the root node to any token in
the document forms a global numbering scheme for
each token whose lexicographical order corresponds
to standard document order. Further, since each frag-
ment contains the leading path to its first token and
the ID start, a local ID, smaller than the ID of the first
token, the leading path’s ID-list extended by start can
be used to globally order the fragments. See, for example Fig. 7: In the third row (labeled with I) the ID lists
0.5 < 1, 0.5 < 1, 1, 0.5 < 1, 2.5 < 1.5 < 2, 0.5 are ordering the fragments from left to right. We use this ordering for
sorting the fragments such that they are presented in the correct order to the reduce functions. Figure 11 shows the
definitions for the grouping and sorting comparator used in the Parallel strategy. Two keys that both have the group
flag set, are compared based on the lexicographical order of their gpath entries. Keys that have group not set are
simply compared. This ensures that one of them is strictly before the other that the returned order is consistent. The
sorting comparator simply compares the IDs of the leading paths extended by start lexicographically.

12

Naive XMLFS Parallel
Data XML File File system representation Key-value pairs
Split Centralized Centralized Parallel
Group Centralized by one reducer Via file system + naming Parallel by reducers

No shuffle, no reduce
Key-Structure One integer Leading path with Ids Leading path with Ids

and grouping information
Value-Structure SAX-elements SAX-elements with XMLIds SAX-elements with XMLIds

Figure 10: Main differences for compilation strategies

4.4. Summary of Strategies
1 GroupCompare: SKey keyA, SKey keyB→ { <, =, > }

IF (keyA.group AND keyB.group) THEN
3 // group based on grouping−path

RETURN LexicCompare(keyA.gpath, keyB.gpath)
5 ELSE

// don’t group (returns < or > for two different fragments)
7 RETURN SortCompare(keyA, keyB)

9 SortCompare: SKey keyA, SKey keyB→ { <, =, > }
// always lexicographically compare “leading path ⊕ start”

11 RETURN LexicCompare(keyA.lp ⊕ keyA.start,
keyB.lp ⊕ keyB.start)

Figure 11: Group and sort for Parallel strategy

Figure 10 presents the main differences of the
presented strategies, Naive, XMLFS, and Parallel.
Note, that while Naive has the simplest data struc-
tures it splits and groups the data in a centralized
manner. XMLFS parallelizes grouping via the file
system but still has a centralized split phase. The
Parallel strategy is fully parallel for both splitting
and grouping at the expense of more complex data
structures and multiple reduce tasks.

5. Experimental Evaluation

Our experimental evaluation of the different
strategies presented above is focused on address-
ing the following questions: (1) Can we achieve significant speedups over a serial execution? (2) How do our strategies
scale with an increasing data load? And, (3) are there significant differences between the strategies?

Execution Environment. We performed our experiments on a Linux cluster with 40 3GHz Dual-Core AMD Opteron
nodes with 4GB of RAM and connected via a 100MBit/s LAN. We installed Hadoop [16] on the local disks8, which
also serve as the space for hdfs. Having approximately 60G of locally free disk storage provides us with 2.4TB of
raw storage inside the hadoop file system (hdfs). In our experiments, we use an hdfs-replication factor of 3 as it is
typically used to tolerate node failures. The cluster runs the ROCKS [26] software and is managed by SunGrid-Engine
(SGE) [27]; we created a common SGE parallel environment that reserves computers for being used as nodes in the
Hadoop environment while performing our tests. We used 30 nodes running as “slaves”, i.e., they run the MapReduce
tasks as well as the hdfs name nodes for the Hadoop file system. We use an additional node, plus a backup-node,
running the master processes for hdfs and the MR task-tracker, to which we submit jobs. We used Hadoop version
0.18.1 as available on the web-page. We configured Hadoop to launch Mapper and Reducer tasks with 1024MB of
heap-space (-Xmx1024) and restricted the framework to 2 Map and 2 Reduce tasks per slave node. Our measurements
are done using the UNIX time command to measure wall-clock times for the main Java program that submits the job
to Hadoop and waits until it is finished. While our experiments were running, no other jobs were submitted to the
cluster to not to interfere with our runtime measurements.

Handling of Data Tokens. We first implemented our strategies while reading the XML data including the images
into the Java JVM. Not surprisingly, the JVM ran out of memory in the split function of the Naive implementation
as it tried to hold all data in memory. This happened for as few as #B = 50 and #C = 10. As each picture was
around 2.3MB in size, the raw data alone already exceeds the 1024MB of heap space in the JVM. Although all our
algorithms could be implemented in a streaming fashion (required memory is of the order of the depth of the XML

8Running hadoop from the NFS-home directory results in extremely large start-up times for Mappers and Reducers.

13

tree; output is successively returned as indicated by the EMIT keyword), we chose an in-practice-often used “trick” to
place references in form of file-names into the XML data structure, while keeping the large binary data at a common
storage location (inside hdfs). Whenever we place an image reference into the XML data, we obtain a free filename
from hdfs and store the image there. When an image is removed from the XML structure we also remove it from hdfs.
The strategy of storing the image data not physically inside the data tokens also has the advantage that only the data
that is actually requested by a pipeline step is lazily shipped to it. Another consequence is that the data that is actually
shipped from the Mapper to the Reducer tasks is small and thus making even our naive strategy a viable option.

Number of Mappers and Reducers. As described in sec. 2, a split method is used to group the input key-valuable
pairs into so-called input splits. Then, for each input split one Mapper is created, which processes all key-value
pairs of this split. Execution times of MapReductions are influenced by the number of Mapper and Reducer tasks.
While many Mappers are beneficial to load balancing they certainly increase the overhead of the parallel computation
especially if the number of Mappers significantly outnumbers the available slots on the cluster. A good choice is to
use one Mapper for each key-value pair if the work per pair is significantly higher than task creation time. In contrast,
if the workA is fast per scope match then the number of slots, or a small multiple of them is a good choice.

All output key-value pairs of the Mapper are distributed to the available Reducers according to a hashing function
on the key. Of course, keys that are to be reduced by the same reducer (as in naive) should be mapped to the same hash
value. Only our smart approach has more than one Reducer. Since the work for each group is rather small, we use
60 Reducers in our experiments. The hash-function we used is based on the GroupBy-part of the PKey. In particular
for all fragments that have the group flag set, we compute a hash value h based on the IDs inside gpath: Let l be the
flattened list of all the digits (longs) inside the IDs of gpath. Divide each element in l by 25 and then interpreted l as a
number N to the base 100. While doing so, compute h = (N mod 263) mod the number of available reduce tasks. For
fragments with the group flag not set, we simply return a random number to distribute these fragments uniformly over
reducers9. Our hash-function resulted in an almost even distribution of all k-v-pairs over the available Reducers.

5.1. Comparison with Serial Execution

 0

 5

 10

 15

 20

 25

(a) #C = 1

 0

 5

 10

 15

 20

 25

(b) #C = 5

 0

 5

 10

 15

 20

 25

(c) #C = 10 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 22000

Serial Naive XMLFS Parallel
Figure 12: Serial versus MapReduce-based execution. Relative speed-ups to se-
rial execution of image processing pipeline (Fig. 3). All three strategies out-
perform a serial execution. The achieved speed-ups for #C =1 is only around
13x, wheras in the experiments with more data, more than 20x speed-ups were
achieved. #B was set to 200.

We used the image transformation pipeline
(Fig. 3), which represents pipelines that per-
form intensive computations by invoking ex-
ternal applications over CData organized in a
hierarchical manner. We varied the number #C
of “C” collections inside each “B”, i.e., the to-
tal number of with “C” labeled collections in a
particular input data is #B ·#C. Execution times
scaled linear for increasing #B (from 1 to 200)
for all three strategies. We also ran the pipe-
line in serial on one host of the cluster. Fig. 12
shows the execution times for #B = 200 and
#C ranging over 1, 5 and 10. All three strate-
gies significantly outperform the serial execu-
tion. With #C = 10, the speedup is more than
twenty-fold. Thus, although the parallel execu-
tion with MapReduce has overhead in storing
images in hdfs and copying the data from host
to host during execution, speedups are substan-
tial if the individual steps are relatively compute intensive in comparison to the data size that is being shipped. In our
example, each image is about 2.3MB in size; and blur executed on the input image in around 1.8 seconds, coloring the
image once takes around 1 second, the runtime of montage varies from around 1 second for one image to 13 seconds
for combining 50 images10.

9Hadoop does not support special handling for keys that will not be grouped with any other key. Instead of shuffling the fragment to a random
Reducer, the the framework could just reduce the pair at the closest Reducer available.

10There are 5 differently colored images under each “C”, with #C = 10, thus 50 images have to be “montaged”.
14

 0

 200

 400

 600

 800

 1000

 0 100 200 300 400 500 600 700 800 900 1000

ru
nt

im
e

[s
ec

on
ds

]

#B is varied on the X-Axis

naive
xmlfs
parallel

(a) #C = 1

 0

 200

 400

 600

 800

 1000

 0 20 40 60 80 100 120 140 160 180 200

ru
nt

im
e

[s
ec

on
ds

]

#B is varied on the X-Axis

naive
xmlfs
parallel

(b) #C = 10

 0

 200

 400

 600

 800

 1000

 0 50 100 150 200

ru
nt

im
e

[s
ec

on
ds

]

#B is varied on the X-Axis

naive
xmlfs
parallel

(c) #C = 100

Figure 13: Runtime comparison of the three strategies executing the pipeline given in Fig. 1. On the X-Axis #B is varied, Y-axis shows wall-clock
runtime of the pipeline. For small XML structures, Naive and XMLFS outperform Parallel since fewer tasks has to be executed. The larger data
the more superior is Parallel.

We also experimented with the number of Mappers. When creating one Mappers for each fragment, we could
achieve the fastest, and most consistent runtimes (shown in the graphs). When fixing the number of Mappers to 60,
runtimes started to have high fluctuations due to so-called “stragglers”, i.e., single Mappers that run slow and cause
all other to wait for the stragglers’ termination.

For this pipeline, all our approaches showed almost the same run-time behavior with Naive performing slightly
worse in all three cases. The reason for the similar runtimes is that the XML structure that is used to organize the
data is rather small. Therefore, not much overhead is caused by splitting and grouping the XML structure, especially
compared to the workload that is performed by each processing step.

5.2. Comparison of Strategies

To analyze the overhead introduced by splitting and grouping, we use the pipeline given in the introduction (Fig. 1).
Since it does not invoke any expensive computations in each step, the run times directly correspond to the overhead
introduced by MapReduce in general and our strategies in particular. In the input data, we always use 100 empty “D”
collections as leaves, and vary #B and #C as in the previous example.

The results are shown in Fig. 13. For small data sizes (#C = 1 and small #B) Naive and XMLFS are both faster
than Parallel, and XMLFS outperforms Naive. This confirms our expectations: Naive uses fewer Reducers than the
Parallel approach (1 vs. 60) even though the 60 reducers are executed in Parallel, there is some overhead involved to
launch the tasks and wait for their termination. Furthermore, the XMLFS approach has no reducers at all and is thus
as Mapper-only pipeline very fast. We ran the pipeline with #C = 1 until #B = 1000 to investigate behavior with more
data. From approximately #B = 300 to around 700, all three approaches had similar execution times. Starting from #B

= 800, Naive and XMLFS perform worse than Parallel (380s and 350s versus 230s, respectively).
Runtimes for #C = 10 are shown in Fig. 13 (b), Here, Parallel outperforms Naive and XMLFS at around #B =

60 (with a total number of 60,000 “D” collections). This is very close to the number of 80,000 “D” collections at
the “break-even” point for #C = 1. In Fig. 13 (c) this trend continues. Our fine-grained measurements for #B = 1
to 10 show that the “break-even” point is, again, around 70,000 “D” collections. The consistency in the break-even-
point numbers suggests that our parallel strategy outperforms XMLFS and Naive once the number of fragments to be
handled and regrouped from one task to the next is in the order of 100,000.

In this experiment, we set the number of Mappers to 60 for all steps as the work for each fragment is small in
comparison to task startup times. As above, we used 60 Reducers for the Parallel strategy.

Experimentation result. We confirmed that our strategies can increase execution time for (relatively) compute-
intense pipelines. Our image-processing pipeline executed with a speedup of 20x. For XML data that is moderately
sized, all three strategies work well, often with XMLFS outperforming the other two. However, if data size increases
Parallel clearly outperforms the other two strategies due to its fully parallel split and group.

6. Related Work

Although the approaches presented here are focused on efficient parallelization techniques for executing XML-
based processing pipelines, our work shares a number of similarities to other systems (e.g., [28, 29, 30, 31]) for
optimizing workflow execution. For example, the Askalon project [31] has a similar goal of automating aspects

15

of parallel workflow execution so that users are not required to program low-level grid-based functions. To this end
Askalon provides a distributed execution engine, in which workflows can be described using an XML-based “Abstract
Grid Workflow Language” (AGWL). Our approach, however, differs from Askalon (and similar efforts) in a number of
ways. We adopt a more generic model of computation that supports the fine-grain modeling and processing of (input
and intermediate) workflow data organized into XML structures. Our model of computation also supports and exploits
processes that employ “update semantics” through the use of explicit XPath scope expressions. This computation
model has been shown to have advantages over traditional workflow modeling approaches [13], and a number of
real-world workflows have been developed within the Kepler system using this approach (e.g., for phylogenetics and
metagenomics applications). Also unlike Askalon, we employ an existing and broadly used open-source distribution
framework for MapReduce (i.e., hadoop) [15] that supports task scheduling, data distribution, and checkpointing with
restarts. This approach further inherits the scalability of the MapReduce framework.11 Our work also significantly
differs from Askalon by providing novel approaches for exploiting data parallelism in workflows modeled as XML
processing pipelines.

Alternatively, Qin and Fahringer [32] introduce simple data collections (compared with nested XML structures)
and collection shipping constructs that can reduce unnecessary data communication (similar approaches are also
described in [33, 34, 7]). Using special annotations for different loop constructs and activities, they compute matching
iteration data sets for executing a function, and forward only necessary data to this iteration instance. Within a data
collection each individual element can be addressed and separately shipped. This technique requires users to specify
additional constraints during workflow creation, which can make workflow design significantly more complex. In
[14] we address similar problems for XML processing pipelines, however, the necessary annotations in our approach
can be automatically inferred based on the the workflow scope descriptions. We complement these approaches here
by focusing on strategies for efficient and robust workflow execution through data parallelization strategies, while
leveraging data and process distribution and replication provided by hadoop. Thus, through our compilation strategies,
we directly take advantage of the operations and sorting capability of the MapReduce framework for data packaging
and distribution. MapReduce is also employed in [33] for executing scientific workflows. This approach extends map
and reduce operations for modeling workflows, requiring users to design workflows explicitly using these constructs.
In contract, we provide a high-level workflow modeling language and automatically compile worfklows to standard
MapReduce operations.

Our work also has a number of similarities to the area of query processing over XML streams (e.g., see [35,
36, 37, 38, 39, 40, 41]). Most of these approaches consider optimizations for specific XML query languages or
language fragments, sometimes taking into account additional aspects of streaming data. FluXQuery [35] focuses on
minimizing the memory consumption of XML stream processors. Our approach, however, is focused on optimizing
the execution of compute and data intensive “scientific” functions and developing strategies for parallel and distributed
execution of corresponding pipelines of such components. DXQ [42] is an extension of XQuery to support distributed
applications, and similarly, in Distributed XQuery [43], remote-execution constructs are embedded within standard
XQuery expressions. Both approaches are orthogonal to our approach in that they focus on expressing the overall
workflow in a distributed XQuery variant, whereas we focus on a dataflow paradigm with actor abstractions, along
the lines of Kahn process networks [44]. A different approach is taken in Active XML [45], where XML documents
contain special nodes that represent calls to web services. This approach constitutes a different type of computation
model applied more directly to P2P settings, whereas our approach is targeted at XML processing applied to the area
of scientific applications deployed within in cluster environments. To the best of our knowledge, our approach is the
first to consider applications of the MapReduce framework for efficiently executing XML processing pipelines.

7. Conclusion

This paper has presented novel approaches for exploiting data parallelism for efficient execution of XML-based
processing pipelines. We consider a general model of computation for scientific workflows that extends existing ap-
proaches by supporting fine-grain processing of data organized via XML structures. Unlike other approaches, our

11Which was demonstrated, e.g., by solving the tera-sort challenge, where hadoop successfully scaled to close to 1000 nodes and Google’s
MapReduce to 4000 nodes on the Peta-sort benchmark.

16

computation model also supports processes that employ “update semantics” [13]. In particular, each step in a work-
flow can specify (using XPath expressions) the fragments of the overall XML structure they take as input. During
workflow execution, the framework supplies these fragments to processes, receives the updated fragments, combines
these updates with the overall structure, and forwards the result to downstream processes. To efficiently execute these
workflows, we introduce and analyze new strategies for exploiting data parallelism in processing pipelines based on
workflow compilation to the MapReduce framework [15]. While MapReduce has been shown to support efficient
and robust parallel processing of large (relational) data sets [46], similar approaches have not been developed that
leverage MapReduce for efficient XML-based data processing. The work presented here addresses these open issues
by describing parallel approaches to efficiently split and partition XML-structured data sets input to and produced
by workflow steps. Similarly, we describe mechanisms for dynamically merging partitions at any level of granular-
ity while maximizing parallelism. Our parallel strategy allows for maximal decentralized splitting and grouping at
any level of granularity: If there are more fragments than slots for parallel execution, i.e., hosts or cores, than any
re-grouping is performed in parallel. This has been achieved via specific key-structures and MapReduce’s sorting
support. Furthermore, our framework also allows the data to be merged into a very small number of very large parti-
tions. This is in contrast to existing approaches, in which the partitions are either computed centrally (which can lead
to bottlenecks) or a fixed partition scheme is assumed. Supporting a dynamic level of data partitioning is beneficial
to the workflow tasks as they are provided the data in exactly the granularity they requested via declarative scope
expressions. Our experimental results verify the efficiency benefits of our parallel regrouping in comparison to more
central approaches (Naive and XMLFS).

By employing MapReduce we also obtain a number of benefits “for free” over more traditional workflow opti-
mization strategies, including fault tolerance, monitoring, logging, and recovery support. As future work, we intend
to extend the Kepler Scientific Workflow System with support for our compilation strategies as well as to combine the
data parallel approaches presented here with the pipeline parallel and data shipping optimizations presented in [14].

Acknowledgments. This work was supported in part by NSF awards IIS-612326, OCI-722079, ATM-619139, DBI-
619060, and IIS-630033. The authors also thank Timothy McPhillips who first suggested and subsequently developed
and implemented an approach called COMAD (Collection-Oriented Modeling And Design) [47, 48] based on an
assembly line metaphor. Our XML Processing Pipelines are an abstract version of the COMAD idea. They also thank
Jianwu Wang and the anonymous reviewers for valuable comments on an earlier draft.

References

[1] G. C. Fox, D. Gannon (Eds.), Concurrency and Computation: Practice & Experience, Special Issue: Workflow in Grid Systems, Vol. 18(10),
Wiley, 2006.

[2] I. J. Taylor, E. Deelman, D. B. Gannon, M. Shields (Eds.), Workflows for e-Science: Scientific Workflows for Grids, Springer, 2007.
[3] E. Deelman, D. Gannon, M. Shields, I. Taylor, Workflows and e-Science: An Overview of Workflow System Features and Capabilities, Future

Generation Computer Systems 25 (2009) 528–540.
[4] P. Amnuaykanjanasin, N. Nupairoj, The BPEL orchestrating framework for secured grid services, Information Technology: Coding and

Computing (ITCC) 1 (2005) 348–353.
[5] J. Fagan, Mashing up Multiple Web Feeds Using Yahoo! Pipes, Computers in Libraries 27 (10) (2007) 10–18.
[6] Intl. Workshop on Web Service Choreography and Orchestration for BPM, Nancy, France (September 2005).

URL http://events.deri.at/bpm2005/

[7] T. Oinn, M. Greenwood, M. Addis, M. N. Alpdemir, J. Ferris, K. Glover, C. Goble, A. Goderis, D. Hull, D. Marvin, P. Li, P. Lord, M. R.
Pocock, M. Senger, R. Stevens, A. Wipat, C. Wroe, Taverna: Lessons in Creating a Workflow Environment for the Life Sciences, in:
Concurrency and Computation: Practice & Experience [1], pp. 1067–1100 (2006) 1067–1100.

[8] B. Ludäscher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger, M. Jones, E. A. Lee, J. Tao, Y. Zhao, Scientific Workflow Management and the
Kepler System, in: Concurrency and Computation: Practice & Experience [1], pp. 1039–1065 (2006) 1039–1065.

[9] J. Hidders, N. Kwasnikowska, J. Sroka, J. Tyszkiewicz, J. V. den Bussche, A Formal Model of Dataflow Repositories, in: Data Integration in
the Life Sciences (DILS), Vol. 4544, 2007, pp. 105–121.

[10] F. Tian, B. Reinwald, H. Pirahesh, T. Mayr, J. Myllymaki, Implementing a scalable XML publish/subscribe system using relational database
systems, SIGMOD ’04: Proceedings of the 2004 ACM SIGMOD international conference on Management of data (2004) 479–490.

[11] N. Walsh, A. Milowski, XProc: An XML Pipeline Language, W3C Working Draft, April 2007.
[12] I. Avila-Campillo, T. J. Green, A. Gupta, M. Onizuka, D. Raven, D. Suciu, XMLTK: An XML toolkit for scalable XML stream processing,

in: PLAN-X, Pittsburgh, PA, 2002.
[13] T. McPhillips, S. Bowers, D. Zinn, B. Ludäscher, Scientific Workflow Automation for Mere Mortals, Future Gener. Comput. Syst. 25 (5)

(2009) 541–551.
[14] D. Zinn, S. Bowers, T. M. McPhillips, B. Ludäscher, X-CSR: Dataflow Optimization for Distributed XML Process Pipelines, in: ICDE, 2009,

pp. 577–580, also see Technical Report CSE-2008-15, UC Davis.
17

http://www3.interscience.wiley.com/journal/112718254/issue
http://www.springer.com/computer/communications/book/978-1-84628-519-6
http://dx.doi.org/10.1016/j.future.2008.06.012
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1428486
http://www.infotoday.com/cilmag/nov07/index.shtml
http://events.deri.at/bpm2005/
http://events.deri.at/bpm2005/
http://events.deri.at/bpm2005/
http://eprints.ecs.soton.ac.uk/10908/01/taverna-ccpe-reviewed.pdf
http://doi.wiley.com/10.1002/cpe.994
http://doi.wiley.com/10.1002/cpe.994
http://www.springerlink.com/content/4562844m321382m3/
http://portal.acm.org/citation.cfm?id=1007623
http://portal.acm.org/citation.cfm?id=1007623
http://www.w3.org/TR/2008/WD-xproc-20080501/diff.html
http://repository.upenn.edu/cgi/viewcontent.cgi?article=1005&context=db_research
http://dx.doi.org/10.1016/j.future.2008.06.013
http://dx.doi.org/10.1109/ICDE.2009.72
http://www.cs.ucdavis.edu/research/tech-reports/2008/CSE-2008-15.pdf

[15] J. Dean, S. Ghemawat, MapReduce: simplified data processing on large clusters, Communications of the ACM 51 (1) (2008) 107–113.
[16] Hadoop, http://hadoop.apache.org/.
[17] V. Benzaken, G. Castagna, A. Frisch, CDuce: An XML-Centric General-Purpose Language, in: ICFP ’03: Proceedings of the eighth ACM

SIGPLAN international conference on Functional programming, ACM, New York, NY, USA, 2003, pp. 51–63.
[18] Y. Zhao, J. Dobson, I. Foster, L. Moreau, M. Wilde, A notation and system for expressing and executing cleanly typed workflows on messy

scientific data, SIGMOD Rec. 34 (3) (2005) 37–43.
[19] N. Podhorszki, B. Ludäscher, S. Klasky, Workflow Automation for Processing Plasma Fusion Simulation Data, in: WORKS ’07: Proceedings

of the 2nd workshop on Workflows in support of large-scale science, ACM, New York, NY, USA, 2007, pp. 35–44.
[20] Image-magick, http://www.imagemagick.org.
[21] C. Barton, P. Charles, D. Goyal, M. Raghavachari, M. Fontoura, V. Josifovski, Streaming XPath Processing with Forward and Backward

Axes, in: Proceedings of the International Conference on Data Engineering, IEEE Computer Society Press; 1998, 2003, pp. 455–466.
[22] A. Gupta, D. Suciu, Stream Processing of XPath Queries with Predicates, in: Proceedings of the 2003 ACM SIGMOD international confer-

ence on Management of data, ACM New York, NY, USA, 2003, pp. 419–430.
[23] D. Borthakur, The Hadoop Distributed File System: Architecture and Design, Apache Software Foundation (2007).
[24] T. Härder, M. Haustein, C. Mathis, M. Wagner, Node labeling schemes for dynamic XML documents reconsidered, Data & Knowledge

Engineering 60 (1) (2007) 126–149.
[25] P. O’Neil, E. O’Neil, S. Pal, I. Cseri, G. Schaller, N. Westbury, ORDPATHs: Insert-friendly XML node labels, in: Proceedings of the 2004

ACM SIGMOD international conference on Management of data, ACM New York, NY, USA, 2004, pp. 903–908.
[26] Rocks clusters, http://www.rocksclusters.org/.
[27] W. Gentzsch, Sun Grid Engine: Towards Creating a Compute Power Grid, in: First IEEE/ACM International Symposium on Cluster Com-

puting and the Grid, 2001. Proceedings, 2001, pp. 35–36.
[28] I. Taylor, M. Shields, I. Wang, O. Rana, Triana Applications within Grid Computing and Peer to Peer Environments, Journal of Grid Com-

puting 1 (2) (2003) 199–217.
[29] E. Deelman, Pegasus: A framework for mapping complex scientific workflows onto distributed systems, Scientific Programming 13 (3)

(2005) 219–237.
[30] Y. Zhao, M. Hategan, B. Clifford, I. Foster, G. von Laszewski, V. Nefedova, I. Raicu, T. Stef-Praun, M. Wilde, Swift: Fast, Reliable, Loosely

Coupled Parallel Computation, in: IEEE Congress on Services, 2007, pp. 199–206.
[31] T. Fahringer, R. Prodan, R. Duan, F. Nerieri, S. Podlipnig, J. Qin, M. Siddiqui, H. Truong, A. Villazon, M. Wieczorek, ASKALON: A Grid

Application Development and Computing Environment, International Workshop on Grid Computing (2005) 122–131.
[32] J. Qin, T. Fahringer, Advanced data flow support for scientific grid workflow applications, in: Proceedings of the ACM/IEEE conference on

Supercomputing (SC), ACM, 2007, pp. 1–12.
[33] X. Fei, S. Lu, C. Lin, A MapReduce-Enabled Scientific Workflow Composition Framework, in: IEEE International Conference on Web

Services (ICWS), 2009, pp. 663–670.
[34] D. J. Goodman, Introduction and evaluation of Martlet: a scientific workflow language for abstracted parallelisation, in: International World

Wide Web Conference (WWW), 2007, pp. 983–992.
[35] C. Koch, S. Scherzinger, N. Schweikardt, B. Stegmaier, FluXQuery: An Optimizing XQuery Processor for Streaming XML Data, VLDB

(2004) 1309–1312.
[36] S. Chandrasekaran, O. Cooper, A. Deshpande, M. J. Franklin, J. M. Hellerstein, W. Hong, S. Krishnamurthy, S. R. Madden, F. Reiss, M. A.

Shah, TelegraphCQ: Continuous Dataflow Processing for an Uncertain World, in: SIGMOD ’03: Proceedings of the 2003 ACM SIGMOD
international conference on Management of data, ACM, New York, NY, USA, 2003, pp. 668–668.

[37] J. Chen, D. J. DeWitt, F. Tian, Y. Wang, NiagaraCQ: A Scalable Continuous Query System for Internet Databases, in: SIGMOD 2000:
Proceedings of the 2000 ACM SIGMOD international conference on Management of data, 2000, pp. 379–390.

[38] M. Balazinska, H. Balakrishnan, S. R. Madden, M. Stonebraker, Fault-Tolerance in the Borealis Distributed Stream Processing System, ACM
Trans. Database Syst. 33 (1) (2008) 1–44.

[39] C. Koch, S. Scherzinger, N. Schweikardt, B. Stegmaier, Schema-based Scheduling of Event Processors and Buffer Minimization for Queries
on Structured Data Streams, in: VLDB ’04: Proceedings of the Thirtieth international conference on Very large data bases, VLDB Endow-
ment, 2004, pp. 228–239.

[40] T. J. Green, A. Gupta, G. Miklau, M. Onizuka, D. Suciu, Processing XML Streams with Deterministic Automata and Stream Indexes, TODS
29 (4) (2004) 752–788.

[41] Y. Chen, S. B. Davidson, Y. Zheng, An Efficient XPath Query Processor for XML Streams, in: ICDE ’06: Proceedings of the 22nd Interna-
tional Conference on Data Engineering, IEEE Computer Society, Washington, DC, USA, 2006, p. 79.

[42] M. F. Fernández, T. Jim, K. Morton, N. Onose, J. Siméon, Highly distributed XQuery with DXQ, in: SIGMOD ’07: Proceedings of the 2007
ACM SIGMOD international conference on Management of data, 2007, pp. 1159–1161.

[43] C. Re, J. Brinkley, K. Hinshaw, D. Suciu, Distributed XQuery, Workshop on Information Integration on the Web (2004) 116–121.
[44] G. Kahn, The Semantics of a Simple Language for Parallel Programming, in: J. L. Rosenfeld (Ed.), Proc. of the IFIP Congress 74, North-

Holland, 1974, pp. 471–475.
[45] S. Abiteboul, A. Bonifati, G. Cobéna, I. Manolescu, T. Milo, Dynamic XML documents with distribution and replication, in: SIGMOD ’03:

Proceedings of the 2003 ACM SIGMOD international conference on Management of data, 2003, pp. 527–538.
[46] H.-c. Yang, A. Dasdan, R.-L. Hsiao, D. S. Parker, Map-reduce-merge: simplified relational data processing on large clusters, in: SIGMOD

’07: Proceedings of the 2007 ACM SIGMOD international conference on Management of data, ACM, New York, NY, USA, 2007, pp.
1029–1040.

[47] T. M. McPhillips, S. Bowers, An Approach for Pipelining Nested Collections in Scientific Workflows, SIGMOD Record 34 (3) (2005) 12–17.
[48] T. McPhillips, S. Bowers, B. Ludäscher, Collection-Oriented Scientific Workflows for Integrating and Analyzing Biological Data, Data

Integrating for Life Sciences (DILS) (2006) 248–263.

18

http://portal.acm.org/citation.cfm?doid=1327452.1327492
http://hadoop.apache.org/
http://portal.acm.org/citation.cfm?id=944711
http://people.cs.uchicago.edu/~yongzh/pub/sigmod-swf-vdl.pdf
http://people.cs.uchicago.edu/~yongzh/pub/sigmod-swf-vdl.pdf
http://portal.acm.org/citation.cfm?id=1273368
http://www.imagemagick.org
http://portal.acm.org/citation.cfm?id=872809&dl=GUIDE
http://portal.acm.org/citation.cfm?id=872809&dl=GUIDE
http://portal.acm.org/citation.cfm?id=872809&dl=GUIDE
http://svn.apache.org/repos/asf/hadoop/core/tags/release-0.15.3/docs/hdfs_design.pdf
http://linkinghub.elsevier.com/retrieve/pii/S0169023X05001795
http://portal.acm.org/citation.cfm?id=1007568.1007686
http://www.rocksclusters.org/
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=923173
http://www.ingentaconnect.com/content/klu/grid/2003/00000001/00000002/05269002
http://iospress.metapress.com/content/84h5q70awx6fau0w/
http://portal.acm.org/citation.cfm?id=1253467.1253487
http://portal.acm.org/citation.cfm?id=1253467.1253487
http://portal.acm.org/citation.cfm?id=1362622.1362679
http://doi.ieeecomputersociety.org/10.1109/ICWS.2009.90
http://portal.acm.org/citation.cfm?id=1242705
http://portal.acm.org/citation.cfm?id=1316821
http://db.cs.berkeley.edu/papers/cidr03-tcq.pdf
http://portal.acm.org/citation.cfm?id=335432
http://portal.acm.org/citation.cfm?id=1331904.1331907
http://portal.acm.org/citation.cfm?id=1316711
http://portal.acm.org/citation.cfm?id=1316711
http://portal.acm.org/citation.cfm?id=1042051
http://portal.acm.org/citation.cfm?id=1129938
http://portal.acm.org/citation.cfm?id=1247641
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.126.7194&rep=rep1&type=pdf
http://daniel-zinn.de/KahnProcessNetworks.pdf
http://portal.acm.org/citation.cfm?id=872757.872821
http://portal.acm.org/citation.cfm?id=1247480.1247602
http://portal.acm.org/citation.cfm?id=1084805.1084809

