
XML-Based Computation for Scientific Workflows

Daniel Zinn #1, Shawn Bowers ∗2, Bertram Ludäscher #3

#Department of Computer Science, University of California at Davis
1 Shields Ave, Davis, CA, USA

1dzinn@ucdavis.edu
3ludaesch@ucdavis.edu

∗Department of Computer Science, Gonzaga University
502 East Boone Avenue, Spokane, WA, USA

2bowers@gonzaga.edu

Abstract— Scientific workflows are increasingly used to rapidly
integrate existing algorithms to create larger and more complex
programs. However, designing workflows using purely dataflow-
oriented computation models introduces a number of challenges,
including the need to use low-level components to mediate and
transform data (so-called shims) and large numbers of additional
“wires” for routing data to components within a workflow. To
address these problems, we employ Virtual Data Assembly Lines
(VDAL), a modeling paradigm that can eliminate most shims
and reduce wiring complexity. We show how a VDAL design can
be implemented using existing XML technologies and how static
analysis can provide significant help to scientists during workflow
design and evolution, e.g., by displaying actor dependencies or
by detecting so-called unproductive actors.

I. INTRODUCTION

Scientists are often faced with the problem of combining

different software components to form larger computational

workflows (e.g. data analysis pipelines). Scientific workflow

systems have recently been proposed as a general approach for

helping scientists with these component integration tasks. For

example, Taverna [5] and Kepler [3] both allow users to build

workflows that combine locally available programs, which

might be written in different languages, with programs that

are accessed via web services. Once an existing algorithm has

been wrapped as a component (actor) in these systems, it can

interoperate with other actors without manual intervention—

the details concerning its invocation are hidden from the

domain scientist, allowing them to instead focus on defining

the desired workflow.

Many systems follow a dataflow-oriented approach: compu-

tational steps are represented as nodes (actors) connected via

channels in a dataflow graph. The scientist then builds more

complex analyses by placing actors on a canvas and connecting

them using a scientific workflow design tool. Despite this

abstraction, it is currently still hard to construct complex

workflows [4]. In particular, dataflow-oriented approaches can

lead to overly complex workflow graphs due to a number

of workflow design challenges [7], [6]: (i) parameter-rich

functions and services, (ii) maintenance of data cohesion,

(iii) conditional execution, (iv) iterations over cross products,

and (v) workflow evolution. In particular, workflows tend

to have many channels and thus very complex workflow

XML XML XML
σ, γ, ω σ, γ, ω σ, γ, ω

XML

(a) Conventional Dataflow

(b) Virtual Data Assembly Lines

A B C

CBA

τ τ ′α βτα τβ
Bσ γ Mω

Fig. 1. In Virtual Data Assembly Lines, data transformation is moved to a
configuration layer, denoted by α, γ, and ω, to reduce wiring complexity and
facilitate more straightforward workflow designs with re-usable components.

graphs. Furthermore, complex wiring is often coupled with

additional actors that are necessary for data manipulation,

complex control-flow, or error handling. These non-scientific

actors (or shims) can further increase the complexity of a

workflow, resulting in workflows that are hard to construct,

extend, and maintain. As an example, consider a purely

dataflow-oriented workflow as in Figure 1(a): besides having

scientifically meaningful actors (here: A, B, and C) there are

additional “shim” actors (shown as black boxes) that are only

necessary for implementing control-flow (e.g., to iterate over

data) and for maintaining data associations.

Contributions. In this paper, we extend our work in [7],

which introduces the general VDAL framework for modeling

scientific workflows: We (1) propose a specific instance of the

VDAL model, called Δ-XML; (2) show how to compile Δ-

XML models to the XML update language FLUX [1]; and

(3) demonstrate how the FLUX type system can be used to

provide additional features for scientific workflow designers,

such as actor-dependency analysis.

II. THE VDAL PARADIGM

In a Virtual Data Assembly Line (VDAL), ad-hoc data

manipulation as it is performed by shims in the conventional

dataflow design is moved to a set of configurable components

(σ, γ, ω, M) around the scientific actor as shown in Fig. 1(b).

Furthermore, data is organized as an XML stream and thus

978-1-4244-5446-4/10/$26.00 © 2010 IEEE ICDE Conference 2010812

Authorized licensed use limited to: Gonzaga University. Downloaded on August 03,2010 at 18:47:23 UTC from IEEE Xplore. Restrictions apply.

τ

output o

d2

d1

d0 r1

r2
r0

σ M

input i

τα τω τ ′

map γ ω

map A

Fig. 2. Dataflow inside VDAL Actor.

associations between data can be maintained as part of the

XML structure. Each of the components σ, γ, ω, and M
has a specific purpose for the transformation of the data as it

flows through the actor (see Fig. 2): The scope σ partitions the

incoming data stream into work-pieces d1, . . . , dn; the input
assembler γ takes each of the di and selects appropriate input

datasets (depicted as green squares) to invoke the scientific

function A on each set. The output data from A (red squares)

is then inserted into the currently processed scope di to form

the modified result ri. The merger component M then simply

places each ri into the data stream at the position of its

corresponding di. In practice, updating the scopes di to ri

often happens in place as the data streams through the actor,

so the final merge step M is implicit in this case.

In contrast to the conventional approach, where shim actors

have to be placed and connected, or even custom-written,

to select input data and to create invocation lists for the

scientific actor A, the VDAL workflow designer only needs

to configure the components σ, γ, and ω of a VDAL actor.

This approach has many advantages [7]: (1) Configurations

are more declarative and thus describe what data should be

selected and where it should be placed as opposed to an

operational description of how data is selected, assembled

and dissembled. (2) Since the configurations refer to labels

in the XML stream, the processing logic is decoupled from

earlier actors. As a consequence, a VDAL actor is oblivious

to how and by which actor the data was created and put into

place in its input stream. (3) Furthermore, configurations can

be chosen from a restricted language and can thus allow the

workflow system itself to reason about the worflow as a whole

to provide valuable modeling support for the developer. This is

not possible in the conventional approach where shim actors

are considered black-boxes, since they are often written in

a general-purpose programing language, which makes their

analysis hard or impossible.

III. Δ-XML – AN INSTANCE OF VDAL

In this section we propose Δ-XML, an instance of Virtual

Data Assembly Lines. We specify the Δ-XML data model,

illustrate syntax and semantics of actor configurations σ, γ
and ω, and define the interface specification for actors that

implement the underlying scientific functions.

A. Δ-XML Data Model

The data model for the Δ-XML channels is XML with

additional types for CDATA. These types, the BaseTypes,

are the usual general-purpose types such as Integer, Boolean
and String, but also include commonly-used domain-specific

types such as PhylogeneticTree or GeneSequence. Thus, our

data model corresponds to rooted, labeled, ordered trees. We

differentiate between collection nodes (short: collections) and

base data nodes. A data node is labeled with the name of

a BaseType and contains a data value of that type; data

nodes can only occur as leaves in the XML tree. Collections

are labeled and can occur as inner nodes (containing other

collections or data) or as leaves (empty collections). Collection

and data nodes can have attribute lists associated with them.

An attribute is a name-value pair, where names are strings and

values are of any BaseType. As usual, a node can have at most

one attribute for any given attribute name.

B. Scientific Actor Representation in Δ-XML

Scientific actors wrap existing algorithms, tools, and ser-

vices, and have associated lists of inputs and outputs, corre-

sponding to the ports in pure dataflow networks. Each input

and output parameter has an associated name and type. The

type T* denotes a list of values whose elements are of type T .

C. Δ-XML Configuration Layer

We now describe the configuration parameters σ, γ, and ω
and provide an illustrative example; for details see [6].

Scope σ. In Δ-XML, the scope σ is specified via an XPath

expression that uses child and descendant axes. Since we

want to ensure that scope-matches di are non-overlapping, we

use a first-match semantics for the descendant axis //. That

means, a breath-first traversal that checks for scope matches

will not traverse into an already found match. While we

prohibit general side axes, checking the presence and values

of attributes attached to nodes along the path is allowed.

Input assembler γ. The input assembler is used to invoke

the scientific actor A and provide it with input data. We use

a query (or binding expression) for each input parameter of

A. Each binding expression can provide data for a single

invocation of A, or a set of data that can be used to invoke A
multiple times. Since parameters for scientific functions can

themselves be lists, binding expressions select lists of lists.

Formally, for each input port i the binding expression Bi

represents a query that given the data in the scope di produces

a list of lists of values of the base data type associated with

port i. The scientific actor A is then invoked once for each

element of the Cartesian product:

B1(di) × B2(di) × · · · × Bn(di) (×)

Grouping. We use a standard foreach loop with two XPath

expressions to select groups:

foreach $p in XPath1 return XPath2

Here, selecting data nodes via an XPath expression will select

the actual value. Furthermore, in contrast to the usual XQuery

semantics, we do not flatten the result sets to form one long

output list, instead the result nodes from XPath2 are grouped

813

Authorized licensed use limited to: Gonzaga University. Downloaded on August 03,2010 at 18:47:23 UTC from IEEE Xplore. Restrictions apply.

1 ScientificActor: CipresTreeInference
2 Input: method of String
3 geneSequences of GeneSequence*
4 seed of Float
5 maxIterations of Integer
6 Output: tree of PhyloTree*
7 ReadScope: //Species
8 Bindings:
9 method <- foreach $p in //Method return $p/String
10 seed <-{42}, {23}
11 geneSequences <- return //Alignment//GeneSequence
12 maxIterations <- return /MaxIteration/Integer
13WriteScope:
14 INSERT AS LAST INTO . VALUE Trees[$result]

Fig. 3. Example for Δ-XML actor configuration

by the result of XPath1, i.e., for each new node bound to p a

new group is formed.

Write expression ω. The purpose of ω is to insert the results

of the scientific actor A into the scope di, or to make other

changes within the scope. We chose to use the XML update

language FLUX [1] for ω. To have access to the results of A,

a special variable $result is used in the FLUX expressions.

Additionally, for each result tuple we allow access to the input

data of A that produced it. In particular, each element of the

list $result will contain an XML tree with root node labeled

tuple and a subtree for each input and output parameter that

was used in an invocation of A. Each subtree is labeled with

the name of the parameter and contains the input or output

data that was used or created, respectively.

VDAL Actor Example. In Fig. 3, the configuration for an

CipresTreeInference actor is shown. The scientific actor

has four input parameters, and produces a list of phylogenetic

trees as output. The actor’s scope is //Species, such that

input data is searched for only within subtrees labeled with

Species. The service should be called for each method

that is under a Method collection in the scope with seeds

23 and 42 each. Gene sequences are read from the scope

under an Alignment collection; the MaxIterations parameter

from inside the MaxIteration collection. The output list of

resulting trees is inserted within a new subtree labeled Trees

inside the current scope.

D. Δ-XML Compilation to FLUX

To compile Δ-XML actors to FLUX programs, FLUX and

its type system need to be extended in three ways:

(1) Adding BaseTypes. FLUX only contains one primitive type

string. However, adding BaseTypes to the type system and

extending the expression language to reflect the change, does

not pose major problems [2], [1].

(2) Adding support to call scientific actors. Cheney proposes

type rules for procedures in [1]. Since scientific actors create

a number of named output lists from a number of named

input lists, with each of the lists containing only BaseTypes,

they can easily be incorporated as procedures into FLUX.

Also, the FLUX implementation can easily be extended by

delegating control to the wrappers when scientific actors are

1 UPDATE //Species AS $readS BY {
2 LET $result :=
3 FOR $methodGrp ∈ $readS//Method RETURN
4 LET $method := $methodGrp/String IN
5 LET $geneSequences := $readS//Alignment//GeneSequence IN
6 FOR $seed ∈ (42, 23) RETURN
7 IF ($readS/MaxIteration/Integer) THEN
8 LET $maxIterations := $readS/MaxIteration/Integer RETURN
9 LET $tree = CipresTreeInference(
10 $method, $geneSequences, $seed, $maxIterations) IN
11 tuple[method[$method], geneSequences[$geneSequences],
13 seed[$seed], maxIterations[$maxIterations],
14 tree[$tree]]
15 ELSE ()
16 IN
17 IF ($result) THEN
18 INSERT AS LAST INTO . VALUE Trees[$result] }

Fig. 4. FLUX program corresponding to Δ-XML actor given in Fig. 3.

called. We will use the service name inside the body of a LET-

statement to denote the function call (see Fig. 4 line 9). Input

parameters are provided in parentheses; output parameters are

bound to the output values inside the LET-statement. For ease

of presentation, parameters are matched by position.

(3) Adding support for descendant axes. FLUX does not allow

the use of descendant axis to avoid overlapping selections

for the focus of an update. Descendant operators in VDAL

scopes are defined to use a first-match semantics to prevent

overlapping scope matches. When compiling FLUX to LUX

(as it is done in [1]) it is therefore possible to rewrite a //

operator into a procedure that exactly implements the first-

match semantics. Descendant operators in the input assembler

are not used to select input focus and are thus already allowed

in FLUX because they are part of μXQ (dos-operator) [2],

which is used as a sub-language in FLUX.

Rewriting Δ-XML to FLUX. A Δ-XML workflow W =
A1→ . . .→An is compiled to a FLUX program F by rewriting

each Δ-XML actor Ai into FLUX statements fi that are then

stringed together in the order of the original actors:

W = A1→ . . .→An � f1; . . . ; fn = F

We now explain the transformation of the example actor in

Fig. 3 to the FLUX code in Fig. 4. As shown in Fig. 4 line

1, each actor is transformed into one UPDATE .. AS .. BY
statement; thus the update given after BY is performed on each

result returned by the scope (here: //Species). Additionally, the

current scope is bound to the variable $readS. In the LET-

statement (line 2), the result-list $result is created. For each

input parameter, a variable (e.g., $method) is introduced. If the

binding was given via a grouping XPath expression (line 10 in

Fig. 3), a fresh variable (here $methodGrp) is used in a FOR-

loop to iterate over the first path; the second path ($p/String)

is adjusted if it refers back to the variable $p (here it is

replaced by $methodGrp). In case the binding was a non-

grouping XPath expression in the actor (Fig. 3 line 11), the

variable (here: $geneSequences) is bound via a simple LET-

statement (Fig. 4 line 4). For literal values, FOR-loops are

introduced if additional groups have been indicated via {...}

814

Authorized licensed use limited to: Gonzaga University. Downloaded on August 03,2010 at 18:47:23 UTC from IEEE Xplore. Restrictions apply.

(Fig. 3 line 12 and Fig. 4 line 6), otherwise a LET-statement

is used. If a non-list parameter is bound with a simple LET-

statement, originating from a non-grouping binding (as in

Fig. 3 line 13), an additional IF-statement is used to only

call the scientific function if the parameter was bound (line

7). Without this IF-statement, the FLUX type system would

not type-check the program as the scientific procedure could

possibly be called with the value “()” for the empty sequence.

As body of all nested FOR and LET-statements, the scientific

function is called and provided with the input parameters. The

output values (or list of values) are bound to the variables

(line 9). Then (lines 11-14), the result tuple is created with

subtrees that are labeled with the names of input and output

parameters and which contain the corresponding data. The

write-expression statement, which will update the scope if the

scientific function was called (and thus $result is not empty)

is then pasted in line 18.

E. Static Analysis for Δ-XML Workflows
Once a Δ-XML workflow has been compiled into FLUX

programs, static analysis techniques available for FLUX pro-

grams can readily be used to provide additional benefits.

Type Safety. Using the FLUX type-system, we can verify

before the workflow is run that all binding expressions will

select data compatible with the scientific functions. This can

be done by adding a type declaration for each scientific

function and by simply type-checking the FLUX program

f1; f2; . . . ; fn. The typing rule for procedures (see [1]) ensures

scientific functions are called with compatible base-data only.

Output Schema Prediction. Given a specific input schema

(or the Any type) as input, we can make use of FLUX’s type

system and predict the output schema of the workflow by

simply applying the rules given in [1].

Actor Dependencies. The basis for detecting unproductive

actors and actor dependencies is the dead-code analysis avail-

able for FLUX and μXQ. Dead-code analysis for FLUX [1] is

an extension of the path-error analysis for μXQ described in

[2]. The analysis detects subexpressions that do not change

the input data. For query-expressions in μXQ the analysis

finds expressions that are equal to the empty sequence (). An

example for dead-code in FLUX is a FOR-loop ranging over a

path that will not have any bindings, or an UPDATE Path BY
statement, in which the Path will always evaluate to an empty

list. We can therefore use the algorithm in [1] to detect cases in

which no scope match will occur. Furthermore, the scientific

actor will not be called if one of the non-list parameters is not

provided with any data. In case the parameter is filled with a

simple XPath expression, the IF statement guarding the LET
binding for the variable will not be satisfied. If the path is

filled with a for-loop, no data will be available to be looped

over and the scientific function is not invoked either.
Whenever the scientific function is not called, $result will

be empty and no update will be performed. However, FLUX’s

rule for its IF statement only detects it as unproductive if both

alternatives are unproductive. Since μXQ can analyze empti-

ness of variables [2], we can slightly improve FLUX’s analysis

and also mark the IF statement unproductive whenever the

current type of the expression is the empty sequence and the

else branch is unproductive (see Appendix). With this slightly

modified FLUX analysis, we can detect unproductive actors

Ai in Δ-XML workflows by checking the associated FLUX

statements fi. To analyze actor dependencies in a workflow

W , we would simply check which actors cause other actors

to turn unproductive if removed and obtain a new required
for relation. This relation can be displayed to the user when

integrating multiple actors in a workflow, and the designer can

thus verify that there are no typos in the XPath expressions (as

otherwise actors would be unproductive). More importantly,

this information also provides feedback on which actors are

essential for downstream steps.

REFERENCES

[1] J. Cheney. FLUX: Functional updates for XML. In ICFP, pages 3–14,
2008.

[2] D. Colazzo, G. Ghelli, P. Manghi, and C. Sartiani. Types for path
correctness of XML queries. In ICFP, pages 126–137, 2004.

[3] Kepler project. http://kepler-project.org.
[4] T. McPhillips, S. Bowers, D. Zinn, and B. Ludäscher. Scientific Workflow

Automation for Mere Mortals. FGCS, 25(5):541–551, 2009.
[5] Taverna. http://taverna.sourceforge.net.
[6] D. Zinn, S. Bowers, and B. Ludäscher. XML-Based Computation for

Scientific Workflows. Technical Report CSE-2009-21, UC Davis, 2009.
[7] D. Zinn, S. Bowers, T. McPhillips, and B. Ludäscher. Scientific workflow

design with data assembly lines. In WORKS, 2009.

APPENDIX

A Slightly More Precise Productivity Check for IF Statements
We follow the common XQuery convention that the empty sequence
“()” evaluates to false, if used in if-then-else expressions. We can
thus improve the dead-code analysis for unproductive if-statements
by replacing the generic rule (1):

Γ � e : bool
Γ �a {τ}(s1)l1{τ1}&L1 Γ �a {τ}(s2)l2{τ2}&L2

Γ �a {τ}(if e then (s1)l1 else (s2)l2)l {τ1|τ2}
&(L1 ∪ L2)[l1, l2 ⇒ l]

(1)

with the following two rules:

Γ � e <: () Γ �a {τ}(s2)l2{τ2}&L2

Γ �a {τ}(if e then (s1)l1 else (s2)l2)l {τ2}
&(L2)[l2 ⇒ l]

(2)

Γ � e �<: ()
Γ �a {τ}(s1)l1{τ1}&L1 Γ �a {τ}(s2)l2{τ2}&L2

Γ �a {τ}(if e then (s1)l1 else (s2)l2)l {τ1|τ2}
&(L1 ∪ L2)[l1, l2 ⇒ l]

(3)

While the rule (1) determines the if-then-else-statement unproductive
only if both sides are unproductive (l1, l2 ⇒ l), the new version
(2) checks whether the type of e is (), and if so, infers a tighter
result type for the update (τ2 instead of τ1|τ2) and marks the if-
then-else-statement unproductive already if the second statement was
unproductive (l2 ⇒ l). In case the type of e is not the empty sequence,
then the old rule is used (3) because a type τ �= () does not guarantee
that all its value are non-empty; consider for example the following
type τ =true | (), which has an empty and a non-empty instance.

ACKNOWLEDGMENT

We thank Timothy McPhillips who developed and
impelemented COMAD (Collection Oriented Modeling &
Design), which VDAL is an abstraction of. This work
supported in part by NSF IIS-0612326, OCI-0722079, DBI-
0619060, IIS-0630033, DOE DE-FC02-07ER25811.

815

Authorized licensed use limited to: Gonzaga University. Downloaded on August 03,2010 at 18:47:23 UTC from IEEE Xplore. Restrictions apply.

