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Abstract—Earth and environmental scientists collect and use
a wide range of observational data. This data often exhibits
high structural and semantic heterogeneity due to the variety
of data collected and the ways in which observational datasets
are structured in practice. However, to address questions at
broad temporal, geographic, and biological scales, researchers
often need to access and combine data from many observational
datasets. This paper presents a system called obsdb that helps to
address these challenges by providing an integrated environment
for storing, querying, and analyzing heterogeneous data based on
a semantic observational model. The model allows for ontology-
based descriptions of observational datasets and provides a
common representation for storing observational data. The obsdb
system is built on top of standard relational database technology
and provides a declarative query language for accessing obser-
vations. Integrated support is also provided for exploratory data
analysis, allowing users to call analytical scripts created using
the R system over stored observational data.

I. INTRODUCTION

Many analyses within the earth and environmental sciences
require access to a wide range of data. These studies often
reuse existing data collected by different researchers and
research groups to study phenomena at broad geospatial, tem-
poral, and biological scales.1 However, while there are a large
number of repositories for storing earth and environmental data
(e.g., [1] contains over 25,000 datasets alone), researchers still
struggle to find relevant datasets and combine them into an
integrated dataset for analysis.

Discovery of relevant datasets is often a multi-step process
that starts by looking for data that matches the user’s desired
criteria at a coarse-grain level, e.g., ensuring that each dataset
contains the general kinds of observations needed. Once can-
didate datasets are found, users then move to a more involved
exploratory analysis phase where the details of each dataset are
examined. Exploratory analysis often involves, e.g., verifying
the contents of the dataset, determining the number of obser-
vations of a particular type, running statistical summarizations,
and visually comparing different dataset variables.

A key challenge in enabling data discovery and integration
involves dealing with the high-degree of structural heterogene-
ity found in observational data. This includes differences at
the format level (e.g., where data can be stored as rasters,
tables, etc.), as well as at the schema level (e.g., where datasets

1As simple examples, a researcher may be interested in studying how
atmospheric and climate conditions influence tree allometry (i.e., growth rate),
or how nitrogen fertilization influences productivity across grasslands.

containing the same types of observations can be stored
using different naming conventions as well as fundamentally
different attribute structures). Further, because of the variety of
phenomena observed and the types of experiments performed,
data semantics play a critical role in discovery and integration
(e.g., to specify as unambiguously as possible the types of
observations of interest).

Increasingly, high-level observational data models are being
developed to help address structural and semantic differences
found in observational data (e.g., [2]–[8]). These models aim
at providing general approaches for describing and repre-
senting observations and measurements found in underlying
datasets by defining common “core” concepts (e.g., denoting
the entities or features being observed, measurement units and
protocols, and context relationships between observations [2],
[3]). A key aim of these models is to enable interoperability
and uniform access to heterogeneous observational data by
abstracting away the underlying representation details found
across observational datasets.

Our goal in this work is to extend these approaches by pro-
viding useful data-management services for researchers based
on a high-level observational data model. Specifically, we are
interested in developing tools and techniques to store, query,
and access observational data using an observational data
model to improve (exploratory) data discovery and integration
for earth and environmental scientists.

Contributions. In this paper, we describe a system called
ObsDB that (i) extends a generic observational model [3]
with query and analysis capabilities, (ii) allows observation
and measurement types to be described and searched using
semantic-web standards; and (iii) seamlessly combines rela-
tional database technology, semantic-web tools, and a popular
analytical application (the R system) within a single observa-
tional database infrastructure. A key contribution of this work
is a formal, declarative query language (ObsQL) for accessing
observational data in a simple and declarative manner. A
benefit of the language is that query results can easily be
converted into tabular data suitable for processing within a
system such as R. We also describe an initial feasibility
study of the current implementation of ObsDB, and discuss
opportunities for future optimization.

Organization. This paper is organized as follows. The ob-
servational model used in ObsDB is described in Sec. II.
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Fig. 1. The observational model used in ObsDB: observations are of made of
entities; observations can consist of a set of measurements and participate in
a set of context relationships with other observations; and each measurement
consists of a characteristic, standard, protocol, precision, and method.

The overall architecture of the ObsDB system is described
in Sec. III, and the current implementation is described in
Sec. IV. Work related to ObsDB is presented in Sec. V, and
we summarize our contributions in Sec. VI.

II. OBSERVATIONAL DATA MODELING

The heterogeneity of observational data is due to a number
of factors [3]: (1) observational data are largely collected
by individuals, institutions, or scientific communities through
independent (i.e., uncoordinated) research projects; (2) the
structure of observational data is often chosen based on collec-
tion methods (e.g., to make data easier to record “in the field”)
or the format requirements of analysis tools, as opposed to
standard schemas (structural heterogeneity); and (3) the terms
and concepts used to label data are not standardized, both
within and across scientific disciplines and research groups
(semantic heterogeneity). A key aim of observational data
models (e.g., [2], [3], [9], [10]) is to help alleviate structural
heterogeneity by providing a single, uniform structure for
representing otherwise heterogeneous datasets. In a similar
way, the goal of ontology-based approaches for observational
data (e.g., [4], [8], [11]) is to help with semantic heterogeneity
by providing a common set of terms and relationships among
terms. The ObsDB model combines these two approaches by
providing basic constructs for representing observational data
(see Fig. 1) that can be further extended with domain-specific
ontology terms.

Fig. 1 shows the main constructs and relationships of the
observation model used within ObsDB. Note that while Fig. 1
uses UML notation, the model is implemented as an OWL-
DL2 ontology in which classes (e.g., Observation) in Fig. 1
denote OWL classes and relationship roles (e.g., ofEntity)
denote OWL object properties.

An observation consists of an entity (denoting the object
observed), a set of measurements, and context relationships
to other observations. Specifically, an observation represents
an assertion that a particular entity was observed and that the

2http://www.w3.org/TR/owl-ref/

corresponding set of measurements were recorded (as part of
the observation). Context relationships state that an observa-
tion was made within the scope of other “contextualizing”
observations. The measurements associated with a context
observation are assumed to be constant for the contextualized
observation. For instance, if a tree was measured within the
context of a plot whose area was recorded, then this is the
area assumed for the plot with respect to the tree observation
(where it is possible for the plot to be resized for different
studies). Context represents a transitive relationship among
observations. Namely, all observations serving as context for
an observation x are also considered context for an observation
with x as its context. Additional constraints with respect to
observations, measurements, and contexts are defined in [3].

A measurement consists of exactly one characteristic (i.e.,
an attribute or property of the observed entity) and one value.
Taken together, the measurement asserts that the observed
entity had the given value for the characteristic. A measure-
ment can optionally contain a measurement standard (e.g., a
unit), a protocol giving the standard procedure used to obtain
the measurement, a precision denoting the accuracy of the
measurement, and a plain-text method description denoting
the actual procedure used while carrying out the measurement.
As shown in Fig. 1, a value is given by an entity such that a
designated subclass of entities represent primitive values (e.g.,
strings and integers), which is similar to how primitive values
are treated within pure object-oriented models, and is an often
used convention within OWL ontologies [12]. Using entities
as values also allows for characteristics to be defined between
entities (e.g., to state that one entity was “adjacent to” another),
however, we only consider the use of simple values here.

Example 1 (Observations and Measurements). Consider a
simple dataset that consists of height and diameter measure-
ments taken of trees within (experimental) plots spread across
different geographic sites. Let Tree, Plot, and Site be
types of entities (i.e., Entity subclasses); Height, DBH
(a type of Diameter), Area, and Name be types of char-
acteristics; and Meter, Centimeter, MeterSquared,
and SiteCode be types of measurement standards (where
SiteCode is a simple example of a “nominal” measurement
scale [13] in this case denoting a catalog of site names). The
following expression gives the measurement and observation
types for the dataset, where “→” denotes a context relationship
among observations.

Tree[Height Meter, DBH Meter] →
Plot[Area MeterSquared, Name] →

Site[Name SiteCode]

This expression (which follows the notation used in the query
language described in Sec. III) is shorthand for an equivalent
set of OWL-DL class definitions. For instance, the expression
“Site[Name SiteCode]” corresponds to a class Siteobs

with the following DL definition [14].

http://www.w3.org/TR/owl-ref/


Siteobs v Observation u ∀ofEntity.Site u
∃hasMeasurement.(∀ofCharacteristic.Name
u ∃usesStandard.SiteCode)

Based on these types, we can define the following measure-
ments of trees within the same plot and site (again using a
shorthand notation based on the query language).

(Tree e1[Height = 19.3 Meter, DBH = 11.2 Centimeter],
Tree e2[Height = 20.8 Meter, DBH = 14.1 Centimeter]) →

Plot e3[Area = 10 MeterSquared, Name = ‘A’] →
Site e4[Name = ‘GCE6’ SiteCode]

Here each ei denotes a resource identifier of type Entity
(e.g., e1 is of type Tree). Further, the expression “Tree
e1[Height = 19.3 Meter, . . . ]” denotes an instance of an
observation of entity e1 and a measurement of characteristic
Height and unit Meter with the value 19.3. For conve-
nience, we omit the corresponding observation, measurement,
characteristic, and unit resource identifiers above.

The observation model is divided into a number of different
ontology modules (each defined in a separate OWL file, with a
separate namespace, etc.). The core ontology defines the basic
constructs shown in Fig. 1; a separate module defines a basic
subclass structure for characteristics and entities as well as
for defining units and unit conversions; and another module
defines standard units and corresponding characteristics and
conversions (including SI units and base dimensions). As on-
going work we are defining ontologies to represent commonly
used measurements in plant and marine ecology, among others
domains. We note that the observation model is compatible
with a number of other efforts, including, e.g., the Phenotypic
Attribute Trait Ontology (PATO), which is an OBO Foundry
[15] ontology containing a large number of commonly used
measurement types [10].

In prior work, we have developed approaches to map tabular
datasets (via “semantic annotations”) into instances of the
observational model [3], [16]. These mappings can be used to
convert tabular data into, e.g., an RDF representation denoting
an instance of the model for the observations contained within
the dataset. The O&M [2] observational model (which has
similar constructs as those of Fig. 1) provides a number
of representation schemes (including XML and OWL [11])
for directly representing observational data originating from
sensor networks as well as other data sources. Similarly,
approaches such as [6] allow users to input data directly into
an observational model similar to Fig. 1. ObsDB compliments
these approaches by providing additional management services
over data that has been stored (e.g., using one of the above
approaches) into a common model.

III. MANAGING SCIENTIFIC OBSERVATIONS

Given the model presented in Sec. II, we now define the
basic architecture and query language of the ObsDB system.
In the following section we provide additional details on the
current implementation of ObsDB.
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Fig. 2. High-level overview of the obsdb architecture.

A. System Architecture

As shown in Fig. 2, ObsDB is comprised of the six main
components described below.

Loading ontologies. Ontologies can be registered with and
loaded into the system using the OWL Ontology Loader. Once
an ontology is loaded, users can access, store, and query
observations using terms from the loaded ontology.

Loading observational data. Similarly, users can add obser-
vational data to ObsDB using the Observation Data Loader.
In general, data can be loaded into the system using a number
of different formats, including those described in the previous
section. However, the current implementation assumes obser-
vational data is represented as OWL individuals (i.e., RDF
triples denoting observation instances). Ontology definitions
and observational data can also be loaded in one step, e.g.,
when both the type information and the data are stored within a
single OWL file. Observational datasets are logically organized
into data collections within ObsDB, where each collection
contains a set of observation instances.

Storing observational data. Loading observational data into
the system using the data loader results in the creation of a
collection (if the collection has not already been created). The
data collection together with the corresponding observations
are stored using the ObsDB schema within a relational DBMS.
The underlying database of ObsDB manages observations and
collections as well as query results.

Processing observation queries. A separate query processor
component is used to translate high-level observational queries
(expressed in the ObsQL language; see below) into SQL
statements that are evaluated over the underlying database.
The query language allows users to select observations stored
within ObsDB based on a number of conditions. The result
of a query is a set of observations, and query results can be
saved as (virtual) collections within ObsDB.

Executing exploratory analyses. The Exploratory Data Anal-
ysis component allows users to run analytical scripts (in the



current implementation, as R scripts) over observational data
stored within ObsDB. To execute an analysis, users select a
subset of observations (which may span multiple collections)
via a query, and then apply the analysis to the query result.
ObsDB automatically creates the appropriate data from the
query result that is then used to call the analysis. We describe
how this is currently implemented in Sec. IV.
Managing ontologies. The Ontology Manager is used by
the ontology loader, data loader, and the query processor.
Specifically, the manager provides a number of basic services
(via Pellet3 and the OWL API4) for reading and writing
OWL/RDF files, checking consistency, and for generating
class hierarchies. The ontology and data loader both use
the manager for parsing OWL/RDF files and determining
whether a given dataset and ontology is consistent. The query
processor uses the ontology manager to help validate and
evaluate query expressions. For example, the class hierarchies
produced by the manager are used by the query processor to
“expand” queries, i.e., to find observations and measurements
having subtypes of the types given in a query expression. The
ontology manager is also used to export data collections as
OWL/RDF files (not shown in Fig. 2).

B. A Query Language for Observational Data

A major feature of ObsDB is its ability to allow users to
express and evaluate high-level queries for accessing observa-
tions stored within and across collections of observations (i.e.,
datasets). Queries also form an integral part of exploratory
data analysis, e.g., by allowing users to discover and then
select relevant portions of data collections for further analysis.
Below we first present examples demonstrating the syntax
of the observation query language (ObsQL) supported within
ObsDB, followed by a more formal definition of the language.
Query examples. Within ObsDB users can associate an OWL
ontology namespace with a prefix name. As in XML, the
prefix (followed by a colon) is appended to the class name to
uniquely identify the class. For example, the following ObsQL
query selects all observations whose entities are of type Tree
(where Tree is assumed to be defined within the ontology
denoted by the prefix name o1).

o1:Tree

It is also possible within ObsDB to omit the prefix name, in
which case the system matches all classes of the given name
across the loaded ontologies. To simplify the examples below,
we omit the prefix labels.

The following query consists of an entity type (Tree)
and a simple measurement type (denoted by square brackets)
consisting of a characteristic type (Height).

Tree[Height]

This query returns all tree observations (i.e., of Tree entities)
having at least one height measurement (i.e., with a Height

3http://clarkparsia.com/pellet/
4http://owlapi.sourceforge.net/

characteristic). The query above can also include a measure-
ment standard, e.g.,

Tree[Height Meter]

returns the set of observations of trees with height measured in
meters. It is possible to use multiple measurement constraints
within a single observation query. For example, the query

Tree[Height Meter, Diameter Centimeter]

returns the set of observations of trees that contain both a
height measurement in meters and a diameter measurement
in centimeters. In this case, since DBH is a subclass of
Diameter, observations containing measurements of DBH
would also be returned.

In addition to queries over entity and measurement types,
ObsQL also supports value-based queries. For example,

Tree[Height > 20 Meter]

selects tree observations with height measurements greater
than 20 meters. Other valid comparison operators include <,
≤, >, ≥, LIKE, and BETWEEN (i.e., the standard set of SQL
value comparison operators). Multiple value comparisons can
be used, as shown in the following query.

Tree[Height > 20 Meter, DBH between 12 and 25]

Each of the above queries involve simple observation selec-
tion conditions. More complex queries can be constructed by
combining observation selection conditions through union and
context constraints. For instance, the query

(Tree[Height Meter], Soil[Acidity pH])

returns a set of observations such that each observation is
either (1) of a tree entity with a height measurement in meters,
or (2) of a soil entity with acidity measured using the pH scale.
Similarly, a context query such as

Tree[Height Meter] → Soil[Acidity pH]

returns tree and soil observations, but where each tree obser-
vation has a corresponding soil observation as context. Note
that the tree and soil observations may be directly or indirectly
connected through context (i.e., tree observations may be
directly connected to an observation that is connected to the
soil observation), since context relationships are transitive.
Using ObsQL, context constraints can also be chained together.
For instance, the query

Tree → Plot → Site

returns tree, plot, and site observations in which tree ob-
servations have a corresponding plot observation as context,
and plot observations have a corresponding site observation
as context (again, where these observations may be directly
or indirectly connected via context relationships). It is also
possible to combine both types of queries, e.g., the query

(Tree, Soil) → Plot → Site

http://clarkparsia.com/pellet/
http://owlapi.sourceforge.net/


returns tree, soil, plot, and site observations such that the
tree and soil observations are related through context to the
same plot observation, and each plot observation is related
through context to a corresponding site observation. Similarly,
the following query

(Tree, Soil) → (Plot, Zone)

returns tree, soil, plot, and (ecological) zone observations such
that pairs of tree and soil observations have the same plot and
zone observation context.

In the above examples, each query returns a “flat” set of
observations. In Sec. IV we show how results can additionally
be formatted based on the structure of the query to enable
further computation (i.e., for exploring query results through
simple aggregation or more complex R scripts). ObsQL also
allows “placeholder” variables in query expressions to access
observations and measurements within a query result. Place-
holder variables do not influence query results. As an example,
the following query uses the placeholder variables $t and $h
(where t, h can be arbitrary labels and ‘$’ denotes a variable).

Tree $t[Height $h > 20 Meter]

Here, the variables can be used in additional expressions
within ObsDB to compute aggregates (or in general, run R
scripts) over query results. For example, from this query we
can issue the ObsDB command “count $t” which gives the
number of observations returned by the query. In this example,
the variable $t denotes a set of observations, whereas the
variable $h denotes a set of measurements.
Syntax and semantics. More formally, the abstract syntax
of ObsQL is defined by the following grammar rules where
e denotes an entity type, c a characteristic type, and s a
measurement-standard type; where types denote sets of con-
forming instances such that if r is of type t, then r ∈ t.

q ::= t | t→ q

t ::= e | e[m] | t, t

m ::= c | c s | c opv | c opv s | m, m

As shown above, we often use parenthesis to group expres-
sions. A query q : R→ R over a set R of observation resource
identifiers returns the subset of identifiers Jq(R)K ⊆ R that
satisfy q. For convenience, in the following we omit R. We
first define the semantics of simple entity and characteristic
expressions:

JeK ≡ {ro | ∃re : ofEntity(ro, re), re ∈ e}

JcK ≡ {ro | ∃rm, rc : hasMeasurement(ro, rm),

ofCharacteristic(rm, rc), rc ∈ c}

Jc sK ≡ {ro | ∃rm, rc, rs : hasMeasurement(ro, rm),

ofCharacteristic(rm, rc), rc ∈ c,

usesStandard(rm, rs), rs ∈ s}

Jc opvK ≡ {ro | ∃rm, rc, v
′ : hasMeasurement(ro, rm),

ofCharacteristic(rm, rc), rc ∈ c,

hasValue(ro, v
′), (v′ opv) ≡ true}

Jc opv sK ≡ {ro | ∃rm, rc, v
′, rs : hasMeasurement(ro, rm),

ofCharacteristic(rm, rc), rc ∈ c,

hasValue(ro, v
′), (v′ opv) ≡ true,

usesStandard(ro, rs), rs ∈ s}

In particular, an entity class expression returns observation
identifiers consisting of entities of the type e. We note that
r ∈ e′ and e′ v e implies r ∈ e (according to the standard
definition of “is-a”). Similarly, characteristic class expressions
return observation identifiers with at least one measurement
containing the given characteristic type c. A value expression
opv consists of a comparison operator (see above) and a
value v (or a range of values in the case of BETWEEN). A
measurement standard further filters a measurement requiring
that the given standard be used.

For an expression m1,m2 we define Jm1,m2K ≡ Jm1K∪ Jm2K,
and similarly for t1,t2 we define Jt1,t2K ≡ Jt1K ∪ Jt2K.
Composite expressions are defined as follows.

Je[m]K ≡ {ro | ro ∈ JeK, roJmK}

Jt→ qK ≡ {ro1, ro2 | ro1 ∈ JtK, ro2 ∈ JqK,
hasContext(ro1, ro2)}.

Thus, an entity class expression combined with one or more
measurement type expressions selects observations that match
both the entity class and the measurement types (which is
equivalent to the intersection of JeK and JmK). Similarly, two
observations matching a type t1 and a type t2 satisfy a context
query t1 → t2 if they participate in a context relationship. In
this case, we return the set containing both the observations
of t1 and t2. This can easily be extended to queries of the
form t→ q as shown above.

IV. SYSTEM IMPLEMENTATION

The current implementation of the ObsDB system represents
a functional prototype of the architecture and ideas presented
in the previous section. The current system is written as an
open-source Java application that is built over the Apache
Derby embedded relational database system. The ObsDB
framework is primarily designed to be used within an external
application, e.g., where ObsDB is used as an internal library
or wrapped as an external (e.g., web) service. In addition, we
have developed a command-line interpreter that can be used
to directly run the ObsDB system.

Here we describe the details of the implementation, focusing
on the physical schema of the underlying database, the steps
involved in answering ObsQL queries, the integration of the
R system for providing exploratory analysis support, and a
preliminary evaluation of the system (with respect to query
and analysis support).



A. Physical Schemas

We first describe the physical schemas used to store ontolo-
gies and observational data.

Ontologies. Registered ontologies are stored using the rela-
tions:
• ontology(u, ps, pl) where u is the ontology URI, ps

is the original location of the ontology (given as a file
path or URL), and pl is the local (internal) path to the
ontology.

• prefix(n, u) denotes a mapping between an a prefix
name n and a namespace URI u.

Note that when an ontology is loaded, a local copy is created
and the system verifies that all imports (dependencies) of the
ontology are registered within ObsDB.

Observations. When data is loaded into ObsDB the cor-
responding OWL/RDF file is parsed and shredded into the
following relations.
• observation(u, oid, eid) denotes the observation in-

stances where (u, oid) is the full resource identifier for
the observation such that u is the namespace URI and
oid is the fragment id. The entity instance is given by
the fragment id eid, which we assume has the same
namespace URI as the observation.

• entity(u, eid, etu, etid) denotes entity instances with
resource id (u, eid), and (etu, etid) denote the resource
id of the named OWL class declared as the entity type.

• context(u, oid1, oid2) denotes context relationships be-
tween observations, where both are assumed to be de-
clared within the same namespace URI u.

• measurement(u, mid, oid, ctu, ctid, . . . , sv, nv)
denotes measurement instances where (u, mid) is
the resource id of the measurement, oid is the id (with
respect to u) of the observation the measurement is
for, (ctu, ctid is the resource id of the characteristic
type, and sv and nv represent non-numeric and numeric
measured values, respectively (not shown are standard
types, protocol types, method strings, and precision
values). For a measurement, the measured value is stored
in either of sv or nv depending on the value type.

In addition to the above tables, we also store the full (transi-
tive) classification hierarchy in a separate table for each type
(e.g., characteristic, entity, standard, etc.). These tables are
updated as new ontologies are loaded into the system, and
are used in query evaluation.

B. Query Evaluation

Each query q is rewritten into a corresponding SQL ex-
pression over the physical schema. Given a query, the ObsDB
query processor performs the following steps.

1. Check validity: This step performs query parsing and
ensures that the query is well-formed. During this step, it
is also possible to perform simple type checking, e.g., to
ensure that the query uses appropriate types for characteristics,
entities, and so on.

2. Remove variables: When running queries, users can op-
tionally store the query result within the database. In this case,
a separate table is used to also store the query expression corre-
sponding to the result table. The query expression (containing
variables) is used later for additional operators supported by
ObsQL and when performing external R functions. Thus, once
the query is parsed, we remove the variables, which are not
needed for query evaluation.

3. Rewriting: Once the query is parsed and the variables are
removed, we rewrite the query expression into an equivalent
SQL expression over the physical schema. The rewriting step
largely follows the semantics of ObsQL given in the previous
section with two exceptions. First, we incorporate as part of
rewriting the classification tables described above to match
observations that use subclasses of those used in the query.
Second, instead of returning a single set of observations, we
return a table that contains two columns per observation type
given in the original query (where the first column gives
the namespace URI and the second the fragment id of the
observation instance). For example, the query

(Tree, Soil) → Plot

is rewritten into an SQL query that returns three sets of
columns corresponding to tree observations, soil observations,
and plot observations, respectively. Note that, similar to the
semantics given in the previous section, only observations are
returned by a rewritten query.

4. Execute SQL query: The generated SQL query is executed
over the database and the result of the query is stored as
a separate, temporary table. We then run an additional SQL
query over this table to remove potential duplicate matches,
i.e., for cases in which the same set of observations match
multiple observation types within a query (the original query
eliminates cases where the same observation matches multiple
types). As a simple example, the query

(Tree, Plant) → Soil

could result in duplicate matches since trees are considered
types of plants. If o1 and o2 are both tree observations
contextualized by the soil observation o3, the result of the
initial SQL query would contain (omitting namespace URIs):

{(o1, o2, o3), (o2, o1, o3)}

assuming these were the only observations in the database.
The result of removing duplicate matches is stored in another
temporary table.

5. Convert query result to R data frame: Using the result of
the previous step, we then create an R data frame. The data
frame is constructed by rejoining the query result table with
the measurements specified in the original query to obtain the
measured values for the observations. (Alternatively, we could
also select the measurements as part of the query result and use
this to directly generate the corresponding data frame, which
may provide a slight speed-up in overall query response time.)
The resulting data frame is stored in a local file and indexed



within the database (for the case when the user wishes to store
the query result). Finally, the data frame is displayed to the
user within the ObsDB interpreter.

C. R System Integration

The ObsDB system provides “built-in” commands for sum-
marizing query results. The system also supports analysis
through the use of ad-hoc R scripts, which can be dynami-
cally loaded into ObsDB. We support the standard aggregate
operators of SQL (i.e., count, sum, avg, min, max) as well
as additional operators for computing value ranges, standard
deviations, medians and modes, and for basic graphing (plots,
barcharts, plot matrices, etc.). An aggregation expression takes
the form

op $m [ by $o ] in q

where op is an aggregate operator (excluding count), $m is
a measurement variable, $o is an observation variable, and
q is the name of the stored query result. The count operation
differs in that $m is required to be an observation variable, i.e.,
using count we total the number of observations as opposed to
the number of measured values. The by clause is optional and
restricts the scope of the aggregate operator to observations
that have a context relationship with $o. Similar to the GROUP
BY clause in SQL, the result is the aggregate value for each
corresponding context observation. Aggregate operations are
implemented in ObsDB using SQL (for the standard SQL
operators) and through R (for the remaining operators; via the
data frame support described above). For example, consider
the following ObsDB query expression.

Tree $t[Height $h] → Plot $p → Site $s as q1

Here, the query result is stored within a table named q1. We
can now perform, e.g., the following summarizations over q1

count $t by $s in q1
avg $h by $p in q1

stddev $h by $s in q1

which return the number of tree observations in each site,
the average height of trees within each plot, and the standard
deviation of tree heights by site, respectively, for observations
returned by the query q1.

ObsDB also allows ad hoc R scripts to be registered with
the system and then run over query results. To register an R
script, special comments must be added to the header of the
script to denote variable names (and optional descriptions),
which are replaced by appropriate values when the script is
run within ObsDB. After a script is registered with ObsDB,
the header of the script is parsed and indexed. Users can then
list registered scripts (which displays the name of the script
and the associated variables and comments). The script can
then be called from within ObsDB by issuing the command

run s a1 a2 . . . in q

where s is the name of the script, each ai is an argument, and
q is the name of the query the script is run over. Arguments
are passed via placeholder variables from the query. ObsDB

executes the script by replacing script variables with the
corresponding columns of the data frame associated to the
query variables.

D. System Evaluation

To test the feasibility of our query rewriting implementation
of ObsDB, we performed an initial experimental evaluation
over a corpus of test datasets (see Fig. 3). The datasets ranged
from approximately 40 to 1100 observations with twice the
number of context relationships for each dataset (thus, we
considered a relatively large number of context relations).
Each test dataset had context relationship “chains” of length
3. In addition, we considered three types of queries: (1)
simple queries of the form “Tree[Height > 20]” (SQ);
(2) simple context queries of the form “Tree[Height >
20] → Plot[Name LIKE ‘Plot%’]” (SCQ); and (3)
context queries similar to SCQ but with two context relations
(MCQ). Each query had approximately the same selectivity
ranging from 13% to 20%. All tests were performed on a
2.13 GHz Linux machine with 2 GB of memory.

The results of executing these queries over the test data are
shown in Fig. 4, which shows total execution time including
the initial rewritten query, temporary table creation, and R data
frame creation. As shown, the overall query execution times
increase significantly as the number of context relationships
within the query increase. In addition, the simple queries (SQ
and SCQ) take considerably less time than the queries with
multiple contexts (MCQ) for larger numbers of observations.
For each query, generating the temporary tables and the R data
frame contributed only a small (and largely linear) portion of
the overall time. The primary bottleneck in answering SCQ
and MCQ queries for larger datasets is due to the number
of joins introduced in the initial SQL rewriting step (where
MCQ queries involving two context relations contain 17-
way joins). While promising, the results for multiple context
queries highlight the need for additional optimizations; without
optimization, these queries are only feasible for smaller sized
datasets. An obvious approach is through denormalization
(e.g., combining the measurement and observation tables of
the physical schema). As ongoing work, we have developed
optimization techniques with demonstrated scalability and
query responce time improvements for MCQ queries.5 We
also intend to explore approaches based on techniques used
in column and RDF triple stores [17].

V. RELATED WORK

The need for more uniform mechanisms to describe observa-
tional data has led to a number of proposals for observational
data models (e.g., [2], [6], [7], [9]), and corresponding on-
tologies (e.g., [4], [8], [10], [11]). The work presented here is
complementary to these efforts. Specifically, ObsDB provides
a framework for managing observational data according to a

5Our preliminary results (not shown here due to lack of space) reduce MCQ
query time to less than 1 second for databases of 500,000 observations (i.e.,
100 datasets each with 5,000 rows containing 10 observations per row). This
work uses PostgreSQL instead of Derby).
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generic observational data model, supports the use of domain-
specific ontologies for describing this data, and supports a
novel high-level query language for discovering and accessing
observations (within and across datasets). In addition, ObsDB
supports exploratory data discovery tasks (through its R sup-
port) that are crucial for determining the relevance of data
within broad-scale scientific studies.

The ObsQL query language employed by ObsDB is similar
to a number of emerging graph-based query languages (e.g.,
[18]), and with its support for summarization, ObsDB is
similar in spirit to OLAP approaches and approaches for
graph summarization (e.g., [19]). An important difference is
ObsDB’s focus on observational data (e.g., where context has
a specific semantics compared to arbitrary graph arcs) and its
use of ontologies. Further, unlike in traditional OLAP systems,
ObsDB contributes a novel approach for combining querying
and aggregation over graph-based data, which is a relatively
unexplored area in database systems research (e.g., see [19]).
Finally, ObsDB shares similar goals to scientific workflow
systems (e.g., [20]–[22]), which support the definition and
execution of complex data analyses. Many of these systems
provide R support as well as the ability to use ontologies to
help discover and chain together analytical components. These
systems, however, do not provide explicit support for modeling
and querying observational data (as presented here). Addition-
ally, the goal of ObsDB differs from workflow systems in that
instead of focusing on generic data-analysis support, ObsDB
aims to provide data discovery and integration capabilities in
which researchers use analytical functions to explore whether
a given dataset is relevant for their work. After this step, a
researcher may then proceed by executing a larger analysis

over the data using a workflow system. ObsDB and workflow
systems are thus complementary, and one could easily imagine
embedding ObsDB within existing workflow systems.

VI. SUMMARY

We extended our prior work [3] by presenting an archi-
tecture and implementation for managing observational data
(ObsDB). The system provides novel approaches for uniformly
storing and querying heterogeneous observational data. We
also introduced a new query language (ObsQL) that pro-
vides users with a formal, high-level, declarative approach
for discovering and accessing observational data. In addition,
ObsDB seamlessly integrates with the R system for enabling
exploratory data analysis tasks over query results. ObsDB
provides an important step towards leveraging the emerging
development of ontologies in the earth and environmental
sciences for data discovery and integration. As future work,
we are exploring optimization approaches as well as adding
support in ObsDB for importing data in different underlying
formats (e.g., via semantic annotation).
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