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Abstract

We view scientific workflows as the domain scientist’s
way to harness cyberinfrastructure for e-Science. Domain
scientists are often interested in “end-to-end” frameworks
which include data acquisition, transformation, analysis,
visualization, and other steps. While there is no lack
of technologies and standards to choose from, a simple,
unified framework combining data modeling and process-
oriented modeling and design of scientific workflows has
yet to emerge. Towards this end, we introduce a num-
ber of concepts such as models of computation and prove-
nance, actor-oriented modeling, adapters, hybrid types, and
higher-order components, and then outline a particular
composition of some of these concepts, yielding a promis-
ing new synthesis for describing scientific workflows, i.e.,
Collection-Oriented Modeling and Design (COMAD).

1 Cyberinfrastructure for e-Science

Traditional methods for conducting science,i.e., by ob-
serving natural processesin vivo and by controlled wetlab
experimentsin vitro, are increasingly complemented (and
at times replaced) byin silico experiments and simulations.
Computational scientists, for example, have been exploiting
high-end computing resources for simulation science1 for
some time now. In recent years, many other scientific disci-
plines have embraced and even driven IT development and
computer science research to improve current practice or
invent new ways of doing science through “computational
thinking” [1]. In the UK, “e-Science is about global collab-
oration in key areas of science and the next generation of in-
frastructure that will enable it.”2 “[Another] feature of such
collaborative scientific enterprises is that they will require
access to very large data collections, very large scale com-
puting resources and high performance visualisation back
to the individual user scientists.”3
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In the US, this “next generation of infrastructure” is also
calledcyberinfrastructure[3], emphasizing the need for ad-
vanced software tools and high-end computing platforms
that allow scientists to effectively and efficiently conduct
scientific data management and analysis, often collabora-
tively. While the use of cyberinfrastructure for e-Science
obviously cannot replace a scientist’s insight, creativity, or
ingenuity to come up with new (possibly interdisciplinary)
theories and discoveries, there is hope that cybertools can
accelerate scientific knowledge discovery and even facili-
tate new experiments and science not possible before.

Cyberinfrastructure can be seen as a layered architecture:
Instruments ranging from microscopes to telescopes, from
microarrays, mass spectrometers, and fMRI scanners toin
situ and remote sensing devices for environmental stud-
ies, etc., all provide the raw data for subsequent analyses.
Similarly, computational scientists run large-scale simula-
tion codes on supercomputers, generating vast amounts of
data,e.g., from atmospheric and/or ocean models, models
of supernova explosions, protein folding models, or particle
simulations in fusion plasmas. Assimilation models inform
simulations via observational data,i.e., they integrate,e.g.,
Doppler radar measurements into a cloud model.

On top of data producers, a Grid middleware layer can be
employed to facilitate transparent access to distributed data
and computational resources. Grid or web services then
provide distributed data access, authentication, resource al-
location, scheduling services, remote execution,etc.

Finally, scientists may use this cyberinfrastructure in
a number of ways. For example, some users may rely
on web-based tools or custom portals through which they
can execute predefined services or data analysis pipelines.
Similarly, a web-accessible “workbench” environment may
allow users to create simple ad-hoc analysis workflows.
When trying to implement more sophisticated use cases,
specifically advanced analysis pipelines from the available
resources, however, scientists are often left to their own de-
vices. This can mean,e.g., that a scientist has to use copy-
paste to move data from one tool or webpage to another. Al-
ternatively, some scientists simply stay within a single tool
(say a spreadsheet application) or otherwise confine them-
selves to predefined use cases provided through a web por-
tal. For more sophisticated analyses, scientists may need to
develop their own specialized programs or scripts to “glue”
together various applications. In order to fill the obvious
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Figure 1. Promoter Identification Workflow (PIW)

need at the top-level of cyberinfrastructure,i.e., where sci-
entists build and run their virtual experiments and analysis
pipelines,scientific workflowsare emerging as a new mod-
eling and execution paradigm [12, 22, 29].

2 Scientific Workflows

The term ‘workflow’ has traditionally been used mainly
in the context of business applications. The Workflow Man-
agement Coalition,4 e.g., defines workflow as“the comput-
erized facilitation or automation of a business process, in
whole or part.” In this sense, a scientific workflow facili-
tates or automates a “science process”,e.g., the execution
of an experiment in the wetlab, followed by analytical post-
processing of the data, and an interpretation of the results.
Specifically, we can view a scientific workflow as a descrip-
tion of the processes that a scientist needs to execute in or-
der to create a “science product” (e.g., data analysis results,
visualizations, solved protein structures, publications,etc.)

Promoter Identification Workflow. As a concrete exam-
ple, consider the scientific workflow depicted in Figure 1.
This so-calledPromoter Identification Workflow(PIW) [27]
has been implemented in the KEPLER system [21]. The

4http://www.wfmc.org

workflow chains together genomic techniques (here: from
microarray experiments) with bioinformatics tools (here,
e.g., BLAST, ClustalW, and Transfac). Starting from mi-
croarray data, cluster analysis algorithms are used to iden-
tify genes that share similar patterns of gene expression pro-
files that are then predicted to be co-regulated as part of an
interactive biochemical pathway. Given the gene-ids, gene
sequences are retrieved from a remote database (e.g., Gen-
Bank) and fed to a sequence alignment tool (e.g., BLAST)
that finds similar sequences. In subsequent steps, transcrip-
tion factor binding sites and promoters are identified to cre-
ate a promoter model that can be iteratively refined.5

Terminology and Basic Concepts. The workflow de-
scription in Figure 1 illustrates a number of basic concepts:
We consider a workflow as a network of independent com-
ponents calledactors. Actors can beatomic(representing,
e.g., calls to local tools or remote services) orcomposite:
the figure shows three composite actors together with the
subworkflows they contain. KEPLERinherits many features
from the underlying PTOLEMY II system [2],e.g., the ca-
pability of nesting workflows via composite actors, and the
ability to separate the concern of workflowdescriptionfrom
that of workfloworchestration. The former is given by the
workflow graph (and its nested subgraphs), while the latter
is given by a special orchestration and scheduling compo-
nent called adirector. The green box, labeledPN-Director
in Figure 1 is such a component. It dictates that the work-
flow description be executed as aprocess network(PN).

PN is a basic model of computation (MoC), based on the
abstract Kahn process network model [16, 19]. In this MoC,
actors execute as concurrent asynchronous processes which
communicate by sending streams of data tokens over FIFO
channels(the directed edges in the workflow graph).

Several models of computation can be seen as special
cases of PN:e.g., anSDF-Director6 assumes that each actor
declares at compile-time its “firing rate”,i.e., the number of
tokens consumed (for each input port), and the number of
tokens produced (for each output port) per invocation of the
actor. While the PN MoC does not have such restrictions,
these SDF restrictions allow certain static analyses of work-
flows and yield guarantees that are not available for PN. For
example, in SDF it is decidable at compile-time whether a
workflow can execute within bounded memory (all message
queues between actors need to hold only a fixed number of
tokens), or whether a deadlock can occur. In Grid work-
flows further restrictions are often applied,e.g., the DAG
(directed acyclic graph) MoC can be seen as a restriction of
SDF, excluding cycles and stream processing. Thus, a DAG
schedule is simply a topological sort of a workflow graph.7

5Promoters are subsequences that enable gene transcription.
6for Synchronous Data-Flow
7Many other MoCs exist in PTOLEMY II and thus in KEPLER: e.g.,
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3 Actor-Oriented Modeling and Design

We call workflows which are designed with a dataflow
MoC (e.g., PN or SDF) in mind adataflow process net-
work. From a user’s point of view, actors are the main mod-
eling construct in such workflows (with the director han-
dling important details,e.g., workflow scheduling and or-
chestration). Thus, we also speak ofactor-oriented model-
ing and design(AM AD) [18, 5]. The AMAD approach in-
cludes hierarchical modeling (via composite actors) as men-
tioned above, the use of actorparametersto change their be-
havior, andsemantic types(expressions from an ontology
language) [5, 6] to further describe data beyond the con-
ventional structural data types. For the above PIW work-
flow, a semantic data type could involve concepts such as
DNA sequence or Promoter, while a structural type might
be[ (int, string) ], i.e., a list of pairs fromint× string.

The actors at the core of AMAD can be thought of as
parameterized functions,i.e., an actorA with parameters
p̄ = p1, . . . , pk, andn inputs andm outputs gives rise to a
parameterized functionfAp̄ :

fAp̄ :: (α1, . . . , αn) → (β1, . . . , βm)

whereαi andβj are type expressions for the structural types
of the corresponding input and output ports ofA. If n = 0
thenA is called asource, else ifm = 0 thenA is a sink.
A stateful actorA can be modeled via a functionfA having
additional (usually hidden) input and output arguments to
pass the original state in and the updated state out.8

Let τ be a structural type (schema) describing an actor’s
input (or output) ports. Ahybrid data typeis a pair(qτ , σO)
consisting of (i) a queryqτ (x1, . . . , xk), selectingk-tuples
(x1, . . . , xk) of data items, and (ii) a semantic annotation of
the formσO = (x1:C1, . . . , xk:Ck), “tagging” instancesxi

with conceptsCi from an ontologyO.
Both types (i.e., τ andσO) can be treated as orthogo-

nal, allowing the workflow system to warn the user about
structural as well as semantic type violations independently.
The approach can be extended to allow logic constraints be-
tween both type systems. For example, the logic constraint

∀x∀y : R(x, y)︸ ︷︷ ︸
τ-expression

−→ Promoter(x) ∧ DNA seq(y)︸ ︷︷ ︸
O-expression

can be seen as an annotation of the record typeR(x, y) with
the corresponding concepts from an ontologyO. For more
complex annotation constraints and their use see [6].

to model a physical process via ordinary differential equations and solve
them numerically, a CT (continuous time) director can be used.

8In a dataflow process network, the state output port ofA would be
wired back to the state input port ofA via an intermediate delay element
to avoid a deadlock in the feedback loop.

Shimology: Got Adapters? The AMAD model can be
refined further by distinguishinguser actors(those that are
critical for the scientist) fromadapters(“shim” actors [15]).
In a bioinformatics workflow,e.g., a sequence alignment
step or a clustering step would be considered crucial from
the user’s perspective (e.g., they may be mentioned in the
methods section of a scientific publication), hence we clas-
sify the corresponding actors as user actors. On the other
hand, actors which deal with file format conversions, data
movement, the control of loop-constructs, unit conversions
(e.g., from Fahrenheit to Celsius),etc. can be considered
(generalized) adapters. Adapters and shims can be further
classified according to the type of mismatch they overcome.
Some adapter categories are:converterstranslate informa-
tion into alternative forms (e.g., a file converterto/from
FASTA format; aunit converterto/from SI units);selectors
access parts of a data structure for subsequent processing;
transformersreorganize or transform a data structure (e.g.,
via an XQuery),i.e., they implement schema mappings; and
finally, iterators “switch gears”,e.g., by introducing a loop
around an actorfA :: α → β so that the new compound can
accept inputs of type[α] instead of justα (cf. Section 4).

The Different Faces of Scientific Workflows

As mentioned before, domain scientists are typically less
interested in adapters and more in the right choice of user
actors (e.g., which analysis methods should be used) and the
overall workflow design. A workflow engineer, on the other
hand, might be charged with lower-level design issues in a
scientific workflow, or with deploying a workflow in a par-
ticular execution environment. Finally, a computer scien-
tist’s role may be to ensure that workflows can be statically
analyzed or efficiently scheduled. Below, we elaborate on
these different perspectives on scientific workflows.

Domain Scientist’s View. From an end user’s point of
view, automationis a major benefit of the scientific work-
flow approach. For example, a scientist may want to execute
the same data analysis pipeline over and over again with
many different input datasets and/or using different para-
meter settings (e.g., via parameter sweeps [9]). The system
should also be able to record (and later replay) user inter-
actions made during the workflow (interactive actors may
require user input at runtime,e.g., asking the scientist to
select or dismiss data items for further analysis, to choose
among different analysis methods,etc.)

Workflow runs should generate analysis reports, includ-
ing sufficientprovenanceinformation to facilitate result in-
terpretation and “debugging” [7]. For example, the user
may be interested in the specific input datasets, intermedi-
ate results, parameter settingsetc.that contributed to a par-
ticular (possibly surprising) result. Workflow descriptions



together withexecution tracescan thus serve as evidence
or explanations for analysis results. In the future, certain
types of scientific publications may include workflow de-
scriptions and provenance metadata as corroborating evi-
dence for the published results (similar to the current prac-
tice of some bioinformatics journals to require deposition of
data products in public repositories such as PDB).

Other common requirements from a scientist’s perspec-
tive include: Workflow designs should be intuitive and lend
themselves toreuseand repurposing. Moreover, work-
flow reconfigurationshould be seamless. For long-running
workflows (e.g., launching simulations on remote super-
computers [17]), it is often necessary tomonitor workflow
execution and if necessary suspend or abort remote jobs
and/or dynamically change parameter settings of jobs.

Scientific workflows are artifacts (storede.g. in XML)
that can besharedand discussed by the community, and
further evolved as needed. For this to be effective, para-
digms and languages should encouragecomprehensible de-
signsof workflows, based on suitablemodeling constructs
and abstractions. This may be achieved,e.g., via actor-
oriented modeling and design and its extensions,i.e., by
bringing together flow-oriented and hierarchical modeling
(nested workflows), flexible type systems, high-leveldesign
patterns(e.g., based on higher-order functions),etc.

Workflow Engineer’s View. Domain scientists are the
end users (and increasingly the co-designers) of scientific
workflows. Workflow engineers play a role similar to soft-
ware engineers. In the absence of high-level design sup-
port for end users, a workflow engineer may need to design
and implement scientific workflows. In particular, subsets
of the many existing tools in a given discipline often have
to be made available as actors,i.e., “wrapped” into compo-
nents that can be invoked by the scientific workflow system.
Many tools,e.g., can be invoked as a command from an in-
teractive shell; a correspondingshell-actorcan then be used
to quickly wrap existing tools into executable actors.

Another currently very popular approach is to export
functionality from existing tools by deploying correspond-
ing web services. The use of web services can be use-
ful for loosely coupled workflows, but in itself does little
to address the underlying challenges of workflow design,
orchestration, and service composition: How are multiple
components supposed to work together when they were not
designed to fit together? What should web service signa-
tures look like to facilitate reuse? Modeling and design
frameworks (e.g., AM AD and COMAD) begin to answer
such questions, based on general techniques and princi-
ples know from programming languages and software en-
gineering,i.e., types with parametric polymorphism, poly-
morphic methods, abstract data types, models of behavioral
polymorphism [18], and other reusability paradigmse.g.,

based on monads and arrows [14]. While computer scien-
tists might develop or extend these sophisticated methods,
most underlying details could be hidden from the workflow
engineer, who instead could focus on capturing the scien-
tist’s ideas in a high-level workflow modeling language.

Another concern for workflow engineers is performance:
Given a workflow description, how can the workflow be ex-
ecuted efficiently in a cluster or Grid environment, taking
advantage of task-, pipeline-, and data-parallelism? This
optimization challenge can include a variety of problems,
e.g., job-shop scheduling, load balancing, workflow rewrit-
ing, and result caching (e.g., “smart re-runs” of workflows
can avoid unnecessary computations by taking into account
dataflow dependencies and data and parameter updates).

Computer Scientist’s View. The borderline between the
roles and views of workflow engineers and computer scien-
tists is not always clear cut. For example, scientific work-
flow modeling and design methods may be based on a blend
of techniques from software engineering, database theory,
query optimization, stream processing, functional program-
ming, and type theory. In particular, when devising a new
workflow modeling paradigm, a computer scientist might
be interested in formalisms that allowstatic analysisof
workflows to guarantee certain properties such as (struc-
tural and/or semantic) type safety, freedom from deadlocks,
boundedness of memory,etc. A formal model of compu-
tation (MoC) can help computer scientists to derive strate-
gies for scheduling and optimization of workflows. Query
rewriting, functional program transformations, and stream
optimization techniques may be applicable for some MoCs
but not for others. Some workflow scheduling problems are
provably hard (e.g., NP-complete) and will require heuris-
tics to guarantee efficient plan generation. Computer sci-
entists may also be charged to devise inference algorithms
to exploit structural and semantic type information during
workflow design,e.g., to search for suitable components
and data sets, or to generate schema mappings for structural
adapters [4].

Another computer science challenge is the design and
efficient implementation ofprovenance management sys-
temsfor scientific workflows [25]. Consider a workflow de-
scriptionW together with some input datax and parameter
settingsp̄. A model of computationM prescribes how to
compute the workflow outputy = M(Wp̄(x)). With every
workflow execution we associate a data structurer, called
a run. We can think of a runr as a complete capture of the
execution ofW onx, in terms of the MoCM . Depending
on the user requirements, amodel of provenance(MoP)M ′

will in general ignore some aspectsi of M that are not rel-
evant for the user, while at the same time capturing some
information that might not be part ofM (e.g., the workflow
owner, execution timestamps,etc.) With slight abuse of no-



tation, we may state thatt = r− i + m, i.e., aprovenance
trace t is a trimmed workflow runr that ignores some as-
pectsi of the given MoC model, but models some additional
(user-defined) propertiesm [7].

Bioinformaticians and Other New Species. The above
discussion of the different perspectives on and faces of sci-
entific workflows was based on a rough classification of
roles, i.e., domain scientist, workflow engineer, and com-
puter scientist. In concrete projects, the borderlines may
be more or less blurred than described above and additional
roles may exist. The establishment of new fields from inter-
disciplinary grass roots as well as the recent emergence of
e-Science will probably also breed new species of scientists
who are at home in multiple fields [11] and thus are poised
for scientific discoveries in previously unexplored areas. A
prominent example are bioinformaticians which can act in
all of the above-mentioned roles, and thus can be most ef-
fective in advancing the state-of-the-art at the intersection
of disciplines,e.g., biology and computer science.

4 Function-Oriented Modeling and Design

In order to illustrate how scientific workflows give rise to
interesting technical challenges and opportunities for com-
puter scientists, consider again the promoter identification
workflow (PIW) in Figure 1. This early design exhibits
a number of workflow modeling problems [20]. First and
foremost, this process network design is overly complex:
e.g., there are several complex loop constructions involving
backward arcs. Moreover, there are several “special pur-
pose” actors such asEnumHomolog that are designed to fit
precisely in the spot which they occupy, resulting in a very
brittle and non-reuseable workflow. Another problem is that
the design is unnecessarily “serial”,i.e., it does not expose
much of the task- and pipeline parallelism inherent in PIW.

Figure 4 shows a schematic depiction of several differ-
ent workflow modeling paradigms. In the basic process
network model of Figure 4(a), all actors are considered the
same,i.e., the model does not distinguish between user ac-
tors and adapters. In particular, the “auxiliary” actors in
Figure 4, dealing with control-flow issues such as loop con-
trol, distract from the main user actors and add to the overall
workflow complexity. Note that there are several dataflow
directors (DF) that can implement different dataflow MoCs
such as PN and SDF.

One idea to improve the basic process network model
for scientific workflow design is to include ideas from func-
tional programming, specifically higher-order constructs
such asmap and fold [20]. Consider the workflow graph
in Figure 2: This graph represents a dataflow network with
modeling constructs from functional programming (in Fig-
ure 4(b), this is indicated by aFP-DF director). The work-
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d1 :: GeneSeq

d2 :: [ Pid ]

GenBankP

PromoterReg

d3 :: [ PrSeq ]

d4 :: [ PrReg ]

Transfac

d5 :: [ [ TFBS ] ]

GPR2Str

concat

d7 :: [ [ Char ] ]

   zip   

d6 :: [ (Pid,PrReg) ]

putStr

d8 :: [ Char ]

d9 :: IO()

d0 :: GeneId

Figure 2. Functional process network for PIW; double
outlined boxed are wrapped by amap functor.

flow graph in Figure 2 corresponds to the following func-
tional program:

d0 = $gid
d1 = GenBankG d0
d2 = BLAST d1
d3 = map GenBankP d2
d4 = map PromoterRegion d3
d5 = map Transfac d4
d6 = zip d2 d4
d7 = map GPR2str d6
d8 = concat d7
d9 = putStr d8

Note that both the graph as well as the functional program
have a much simpler structure than the workflow design in
Figure 1. In this modeling paradigm, actors have an associ-
ated function signature which can be used to type-check a
workflow, or propagate the known types through the work-
flow to infer the unknown types. For example, the type of
the first actor might be:

GenBankG :: GeneId → GeneSeq

whereGenBankG takes as input someGeneId and returns a
sequenceGeneSeq. Similarly, we might have the following
additional actor signatures:

BLAST :: GeneSeq → [Pid]
GenBankP :: Pid → PrSeq



whereBLAST returns a list of promoter-ids for a given gene
sequence, and where anotherGenBankP function takes a
single promoter-id and produces the promoter sequence. In-
tuitively, a scientist might want to chain together the output
of BLAST with the input ofGenBankP. However, since the
types are different ([Pid] 6= Pid), GenBankP cannot accept
the output fromBLAST. The corresponding type system
will indeed reject this connection, and a type inference al-
gorithm may even suggest a special “adapter” (in our termi-
nology) to bridge the structural gap.

In this case, the well-known higher-order functionmap
is such an adapter. It takes as input a functionf :: (α → β)
and a list of type[α], and successively appliesf to each list
element, resulting in a list of type[β]:

map :: (α → β) → [α] → [β]
f [x1, . . . , xn] = [f(x1), . . . , f(xn)]

The Taverna scientific workflow system has a similar con-
struct calledimplicit iteration [26] to introduce an implicit
map. In our case, we obtain

map(GenBankP) :: [Pid] → [PrSeq]

which now is of the desired type and which can receive the
BLAST output. In Figure 2, actors that have this kind of
map around them are depicted with a double outline and
darker. It should be clear from both the above functional
program as well as the figure that workflow designs re-
sulting from a functional programming model can exploit
higher-order constructs, thus leading to cleaner designs. In
Figure 4(b) we show a dataflow network enhanced with this
functional approach. Another advantage when adopting this
model for scientific workflow design is the ability to exploit
rewriting rules known from functional programming.

For example, we can make use of the fact that

map(f) ◦map(g) = map(f ◦ g)

to replace the two mapped actorsGenBankP followed by
PromoterReg, by a single mapped composite actor con-
taining their compositionPromoterReg ◦ GenBankP. Sim-
ilarly, we can replace thezip followed bymap(GPR2Str) in
Figure 2 by a singlezipWith(GPR2Str), where the higher-
order functionzipWith has the signature

zipWith :: (α → β → γ) → [α] → [β] → [γ]

and takes a functionf :: α → β → γ,9 and applies it it-
eratively on pairs of the type(α, β) coming from the input
lists [α] and[β], yielding a result list of type[γ]. Figure 3
shows the resulting workflow. Note that this rewriting has
integrated two independent actors into a single one. Such
rewritings can also be exploited by the workflow engineer to

9in our caseGPR2Str :: Pid → PrReg → [Char]

GenBankG

BLAST

d1 :: GeneSeq

d2 :: [ Pid ]

 PromoterReg
. GenBankP 

d4 :: [ PrReg ]

Transfac

d5 :: [ [ TFBS ] ]

zipWith(GPR2Str)

putStr.concat

d7 :: [ [ Char ] ]

d9 :: IO()

d0 :: GeneId

Figure 3. Simplified functional process network for PIW

optimize workflow execution. For example, if the two sep-
arate actors were originally sending large amounts of data
over the wire, after the rewriting they are amalgamated into
a single actor which is likely more efficient, given that data
is available locally instead of over the wire.

5 Collection-Oriented Modeling & Design

The functional approach already marks a significant step
forward in structured scientific workflow design. One rea-
son is that higher-order functions such asmap andfold can
be used to eliminate complex backward loop structures from
dataflow networks;cf. Figure 4(a-b). The type systems in
functional programming are also quite flexible (e.g., see
parametric polymorphism), yet allow powerful type infer-
ence which can be exploited during workflow design.

Consider the following language of type expressionst:

t ::= I | R | S | . . . base (int,float, string, . . . )
| (t1, . . . , tk) record
| (t → t) function
| [t] list
| {|t|} bag
| {t} set

Here I, R, S, . . . are base typese.g. for real numbers,
strings,etc.; (t1, . . . , tk) denotes ak-tuple or record type;
(t → t) is used for typing functions (including higher-order
ones); and[t], {|t|}, {t} are type constructors for collection
types,i.e., lists, bags, and sets. The workflow design and
programming style afforded by such (often nested) collec-
tions has proven useful for processing scientific data [10].
In addition, when dealing with MoCs that compute over un-
bounded streams, we can addstreams types〈t〉 and describe
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Figure 4. Different scientific workflow modeling paradigms: (a) vanilla process network, (b) functional programming
process network, (c) XML processing network, (d) Collection-oriented Modeling and Design (COMAD) network

Kahn processes as functions over these types [28]. How-
ever, despite its advantages, the functional approach still re-
quires very precise and fine-grained data modeling.

On the other hand, inXML processing networks– see
Figure 4(c) – we consider actors as consuming XML in-
puts and producing XML outputs,i.e., an even more flexible
semistructureddata model is employed. As before, it is con-
venient to distinguish between user actorsXA1,XA2, . . .
which consume and produce XML, andXML adapters, i.e.,
XML query and transformation actorsXQ1,XQ2, . . .

TheCollection-oriented Modeling and Designapproach
(COMAD) [24, 23] goes one step further and combines
the modeling advantages of the functional approach, the
XML transformation approach, and a general flow-oriented
modeling style. In COMAD, workflows are composed of
collection-oriented actors(co-actors),i.e., which contain
the actual user actorA (Figure 4(d) right) plus built-in
“gears” to facilitate the seamless chaining together of co-
actors. More precisely, a co-actor has aread-scope(R in
the figure), aniteration scopeI, and awrite scopeW. R can
be viewed as a queryqR :: 〈..〉 → 〈(t1, . . . , tk)〉 mapping
a semistructuredXML stream into astructuredstream of
k-tuples. If the iteration scopeI is empty, then the user ac-
tor A :: (t1, . . . , tk) → (t′1, . . . , t

′
m) is fired once for each

matched tuple (elseI can be used to further group the tu-

ple stream). Finally, the write scopeW determines where
the results ofA firings are put back into the stream. By
default, co-actors are add-only,i.e., they inject computed
results into the XML stream, immediately following the ob-
jects that had produced those results.

6 Conclusions

We have argued that scientific workflows are a core com-
ponent of cyberinfrastructure for e-Science. Much work
in computer science and engineering is focused on opti-
mizing algorithms, system performance, and memory re-
quirements. However, the most precious resource in e-
Science is often neglected: human time. In this paper, we
have argued that methods for better scientific workflow de-
sign are needed. To this end, we introduced actor-oriented
modeling and design, extensions with semantic and hybrid
types, functional and XML processing extensions, and fi-
nally collection-oriented modeling and design (COMAD).
Most of these underlying formalisms are not visible from
the domain scientist’s view, however can be important for
the workflow engineer, or computer scientist. First expe-
riences with phylogenetic workflows have shown that the
COMAD approach can lead to simpler, more reusable work-
flow designs [24, 23].
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