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Discovery and integration of data is important in many ecological studies, especially those that concern
broad-scale ecological questions. Data discovery and integration are often difficult and time consuming tasks
for researchers, which is due in part to the use of informal, ambiguous, and sometimes inconsistent terms for
describing data content. Ontologies offer a solution to this problem by providing consistent definitions of
ecological concepts that in turn can be used to annotate, relate, and search for data sets. However, unlike in
molecular biology or biomedicine, few ontology development efforts exist within ecology. Ontology
development often requires considerable expertise in ontology languages and development tools, which is
often a barrier for ontology creation in ecology. In this paper we describe an approach for ontology creation
that allows ecologists to use common spreadsheet tools to describe different aspects of an ontology. We
present conventions for creating, relating, and constraining concepts through spreadsheets, and provide
software tools for converting these ontologies into equivalent OWL-DL representations. We also consider
inverse translations, i.e., to convert ontologies represented using OWL-DL into our spreadsheet format. Our
approach allows large lists of terms to be easily related and organized into concept hierarchies, and generally
provides a more intuitive and natural interface for ontology development by ecologists.
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1. Introduction

Within the fields of molecular biology and biomedicine consider-
able effort has gone into developing ontologies for improving data
discovery and integration (Ashburner et al., 2000; Bard and Rhee,
2004). While similar benefits can be obtained for ecological data, far
fewer efforts exist to develop broad and consistent terminologies
within ecology (Madin et al., 2008; Parr and Cummings, 2004). The
use of formal ontologies can significantly enhance metadata descrip-
tions of ecological data. For instance, annotating data with ontology
terms can both help users interpret data as well as enable advanced
capabilities for data discovery and integration, e.g., by exploiting sub-
sumption and part-of hierarchies as well as more formal constraints
such as cardinality restrictions on properties and term equivalence
(Madin et al., 2008).

Efforts to engage scientists in the development of ontologies
typically leverage the W3C Web Ontology Language (OWL) (Smith
et al., 2004) as a standard XML syntax for representing and sharing
ontologies. A key advantage of OWL is that it is supported by a wide
range of generic tools, including editors (Knublauch et al., 2004;
Kalyanpur et al., 2005), reasoning systems (Sirin et al., 2007; Tsarkov
and Horrocks, 2006), query languages (Prudhommeaux and Seaborne,
2008; Motik et al., 2005), and storage technologies (Carroll et al.,
2004; Broekstra et al., 2002). However, most of these tools are
primarily targeted at experts in knowledge engineering and software
development familiar with the underlying description logic semantics
of OWL-DL (Grau et al., 2008). This is especially true with ontology
editors (such as Protege, SWOOP, etc.), which allow for very detailed
ontology specifications, but at the same time require considerable
understanding of the underlying ontology formalisms and syntax.

The development of the GeneOntology (GO) has been underway for
over a decadewithin themolecular biology community, and has lead to
significant improvements in data interoperability by enriching genomic
and biomedical data resources with annotations to community-based
ontologies. A major lesson learned from these efforts was the
importance of keeping the ontology focused, and indeed GO has a
highly delimited scope (Bada et al., 2004). Ecology, on the other hand,
encompasses an extremely broad range of scales and disciplines, such
that a coordinated ontology development effortwould need to involve a
large number of experts to cover the diverse types of information
relevant to ecological investigations. We believe that ecological
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researchers must also begin constructing ontologies for their own
specialized subdisciplines. However, due to the substantial expertise in
formal knowledge representation that is required to use most existing
ontology editing tools, new tools and approaches are needed to enable
the wide-scale creation and adoption of ontologies in ecology.

This paper presents a novel approach for ontology creation that
aims at being more intuitive for ecologists and that can be used to
rapidly construct large ontologies of ecological terms (classes and
properties). These terms can then be used in subsequent steps to
annotate ecological data (instances), e.g., as described in our previous
work (Bowers et al., 2008; Berkley et al., 2009). Our approach is to
allow scientists to use common and familiar spreadsheet-based tools
(e.g., Microsoft Excel, Apple Numbers, Open Office Spreadsheet) to
describe, in an intuitive way, different aspects of an ontology, and
then to take these descriptions (represented as spreadsheets) and
convert them into full-fledged OWL ontologies using a software
application called owlifier.

An owlifier spreadsheet consists of a set of blocks that have a
predefined template structure for users to fill in. Each non-empty row
in an owlifier spreadsheet constitutes a block. Each block defines
different aspects of an ontology including classes, subclasses, syn-
onyms, and properties. We also provide blocks for plain-text de-
scriptions of classes and properties, and for referencing one or more
existing ontologies (e.g., to extend an existing ontology or to define
ontology articulations). Blocks can be sparse (inheriting from pre-
vious blocks), which further simplifies the creation of large ontologies
by minimizing the amount of redundant information that must be
provided in the owlifier tabular representation. Several of the more
advanced OWL features are omitted in owlifier, primarily associated
with properties (e.g., role inclusion axioms, domain and range prop-
erty restrictions, and data-type properties among others), as these can
be confusing for non-experts and are more suitable for experienced
knowledge modelers.

While not as expressive as OWL-DL, owlifier can be used to
produce ontology structures that are essential for improved data
discovery and integration (Madin et al., 2007). Just as important,
because spreadsheet tools are already frequently used by ecologists to
store and analyze data, owlifier can provide ecologists with a familiar
and accessible user interface for ontology creation. This approach also
leverages the easy-to-use interfaces provided by many spreadsheet
tools for organizing and manipulating tabular data, e.g., via cut/copy/
paste, search/replace, sort, split-window, track-changes, freeze panes,
and so on. In this way, an ecologist can easily construct (or load) a set
of terms, and then incrementally organize these into class hierarchies,
properties, and constraints. The use of an editing environment that is
familiar to scientists can significantly help improve the speed and
understanding of ontology construction and avoid the often time-
consuming task of locating, downloading, installing, and learning
fundamentally new software applications and interfaces (e.g., CMAP-
COE (Hayes et al., 2005), Protege (Knublauch et al., 2004)). In initial
experiments with ecologists and evolutionary biologists studying trait
data, we found that owlifier enabled them to quickly and easily com-
prehend and construct relatively complex and meaningful ontologies.

The rest of this paper is organized as follows. In Section 2 we
describe the basic syntax and semantics of owlifier. The semantics of
owlifier blocks is given by mapping owlifier expressions to descrip-
tion-logic statements. Readers unfamiliar with description-logic
notation may safely ignore these mappings, focusing instead on the
descriptions and examples of blocks given in Section 2. We define
blocks that support a large subset of OWL-DL and that also generally
follow the ontology creation guidelines defined in (Rector et al.,
2004). We also simplify certain aspects of ontology creation using
OWL, e.g., by assuming classes are disjoint by default (unless specified
otherwise) (Rector et al., 2004). In Section 5 we describe additional
characteristics of owlifier and discuss issues with respect to clas-
sification and reasoning. In Section 3 we briefly describe the owlifier
implementation, and conclude in Section 4 with related and future
work. In general, the goal of owlifier is not to support all constructs in
OWL-DL, but instead to provide a higher-level ontology syntax (via
spreadsheet blocks) that is easy for ecologists to use and understand
while also providing the necessary constructs for developing typical
ecological ontologies. By compiling owlifier to OWL-DL, we also allow
for experts to refine and extend the ontology using more advanced
ontology editing tools if necessary (cf. Fig. 1).

2. The syntax and semantics of owlifier

As described above, an owlifier table defines an OWL-DL (Smith
et al., 2004) ontology through a set of blocks representing one or more
ontology definitions. Each non-empty row in an owlifier table cor-
responds to a block. The type of the block is given in the first column of
the row. We assume that if any properties or classes used in a block are
not imported from another ontology, then they are to be added to the
ontology being specified by the owlifier table (i.e., the “current”
ontology). In general, we name blocks according to the terms used in
(Bowers et al., 2008; Madin et al., 2007) as opposed to the names used
for corresponding constructs in OWL-DL. This choice of block names
helps to simplify terminology (e.g., we use “relationship” below instead
of “object property”), allows owlifier to easily generate ontologies that
extend the observational model of (Bowers et al., 2008; Madin et al.,
2007), and avoids confusion with established terms commonly used
within ecology (e.g., “class”).

2.1. Import blocks

Import blocks assign namespace labels to external ontologies. Each
external ontology is imported into the current ontology. We refer to
the ontologies of import blocks as imported ontologies. Using import
blocks, classes and properties of imported ontologies can be used
within other blocks of an owlifier table. Rows containing import
blocks take the form

where n is a namespace label and u is an OWL ontology URI. Classes
and properties from imported ontologies are referenced by prefixing
the namespace label n to the corresponding class or property name in
the normal way. As an example, the following block imports the
SWEET “Earth Realm” ontology (Raskin and Pan, 2005).

import sweet http://sweet.jpl.nasa.gov/ontology/earthrealm.owl

With this import block the class denoting Marine Ecosystems (a class
defined in the SWEET ontology) can be referred to from within an
owlifier table using the expression sweet:MarineEcosystem. Because
this class refers to a class in another ontology, we refer to it as an
imported class.

2.2. Entity blocks

Entity blocks are the primary blocks used to define ontologies. An
entity block introduces new OWL classes and specifies subclass
relationships. Imported classes may also be used within entity blocks
by prefixing class names with namespace labels (as described above).
Rows containing entity blocks take the form

(n≥1)

where each class ci is asserted in the current ontology to subsume ci+1,
for 1≤ i<n. That is, each ci in an entity block induces the description
logic axiom ci+1⊑ci. If both ci and ci+1 are imported classes,we say that

http://sweet.jpl.nasa.gov/ontology/earthrealm.owl


Fig. 1. The basic owlifier application and relation to other technologies.
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the block defines an “articulation” (i.e., mapping) between the two
classes. The following entity block defines a simple subclass hierarchy.

entity PhysicalFeature AquaticPhysicalFeature River

This block states that Physical Feature, Aquatic Physical Feature, and
River are classes; River is a subclass of Aquatic Physical Feature; and
Aquatic Physical Feature is a subclass of Physical Feature. The following
entity block introduces a new class via an imported class.

entity sweet:MarineEcosystem IntertidalEcosystem

This block states that Intertidal Ecosystem is a subclass of the Marine
Ecosystem class imported from the SWEET ontology. Similarly,
assuming “marine” denotes an existing ontology of marine ecosystem
concepts, the following block defines a simple class articulation.

entity sweet:MarineEcosystem marine:DeepSeaEcosystem

This block states that the Deep Sea Ecosystem class of the marine
ontology is a subclass of the Marine Ecosystem class of the SWEET
ontology (thus defining a mapping between these two ontologies).
2.3. Synonym blocks

Synonym blocks define equivalence relationships between ontol-
ogy classes. Rows containing synonym blocks take the form

(n≥2)

where each class ci is equivalent to class ci+1 in the current ontology,
for 1≤ i<n. That is, each ci in a synonym block induces a description
logic axiom of the form ci≡ci+1. The following synonym block
creates a simple equivalence relationship.
synonym Maize Corn

This block states that the Maize and Corn classes are synonyms
(equivalent classes). Similar to entity blocks, synonym blocks often
contain imported classes for extending existing ontologies or defining
ontology mappings.
2.4. Overlap blocks

Except in certain situations (described further in Section 3), classes
are generally assumed to bedisjoint in owlifier. Overlap blocks explicitly
relax this assumption by stating that a given set of classes may share
common instances. Rows containing overlap blocks take the form

(n≥2)

where each class ci is allowed to share instances with each class cj,
for 1≤ i, j≤n. That is, a given ci and cj in an overlap block are not
defined to be disjoint classes in the current ontology. As an example,
consider the following entity blocks that define the classes Estuary,
Lagoon, and Marsh as subclasses of Ecological Habitats.

entity EcologicalHabitat Estuary
entity EcologicalHabitat Lagoon
entity EcologicalHabitat Marsh

Given only these blocks, owlifier treats Estuary, Lagoon, and Marsh as
disjoint classes. To relax this assumption and allow, e.g., types of
Lagoons to also be types of Estuaries, we explicitly add the following
overlap block.

overlap Estuary Lagoon

In general, overlap blocks are rarely used but provide a mechanism
to override the default behavior of owlifier in asserting disjoint
classes.

2.5. Relationship blocks

Relationship blocks define required class object properties. An
object property within OWL is a property defined between two
class instances. Rows containing relationship blocks take the
form

( n≥ 2)

where p is an object property and each c is a class. For every class ci,
the relationship block induces the description logic axiom ci⊑∃p.ci+1

stating that each instance of ci is p-related to some instance of ci+1, for
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1≤ i<n. For example, the following block states that instances of the
class California Voles live in Grassy Areas.

relationship livesIn CaliforniaVole GrassyArea

In some cases, a particular property can apply to a sequence of classes,
and for convenience, each such class can be specified in owlifier using a
single block. For example, consider the following block.

relationship directlyBelow Hypolimnion Thermocline Epilimnion

This block states that, e.g., within a thermally stratified lake, the
Hypolimnion layer is directly below the Thermocline layer, and the
Thermocline layer is directly below the Epilimnion layer.
2.6. Transitive blocks

Transitive blocks are special cases of relationship blocks where the
object property is asserted to be transitive. That is, if a property p is
declared to be transitive, and p relates an individual x to an individual
y and y to an individual z, then p is assumed to also relate x to z. Rows
containing transitive blocks take the form

(n≥2)

where p is an object property and each c is a class. The following
block is a simple example of a transitive relationship definition.

transitive hasPart Body Head Eye Retina

This block states that every instance of the class Body has a Head as
a part, every instance of the class Head has an Eye as a part, and
every instance of the class Eye has a Retina as a part. Moreover,
because the hasPart property above is defined to be transitive, it is
possible to infer that every instance of Body also has an Eye and a
Retina as a part through the inherited relationship restrictions
Body⊑∃has Part. Head, Head⊑∃has Part.Eye, and Eye⊑∃has Part.
Retina.
2.7. Cardinality blocks

Cardinality blocks are also similar to relationship blocks. We
consider three types of cardinality blocks for defining minimum,
maximum, and exact cardinality restrictions. Rows containing mini-
mum blocks take the form

(n≥2)

where m is the minimum number of properties p that instances of
class ci must have to instances of concept ci+1, for 1≤ i<n. For each
class ci, a minimum cardinality block induces the description logic
axiom ci⊑(≤m) p.ci+1 stating that each instance of ci must be p-
related to at least m unique instances of ci+1. The following two
blocks demonstrate simple minimum cardinality constraints.

min hasPart 1 Body Head Nose
min hasPart 2 Head Eye

The first block states that instances of the class Body have at least one
Head as a part, which in turn have at least one Nose as a part.1 The
1 Cardinality restrictions ensuring participation to at least one property are typically not
given throughminimumcardinalityblocks since theyarealso impliedby relationshipblocks.
second block states that instances of the class Head have at least two
Eyes as parts.

Rows containing maximum blocks take the form

(n≥2)

where m is the maximum number of properties p that instances of
concept ci may have to instances of concept ci+1, for 1≤ i<n. For
each class ci, a maximum cardinality block induces the description
logic axiom ci⊑(≥m) p.ci+1 stating that each instance of ci may be
p-related to at most m unique instances of ci+1. The following two
blocks demonstrate simple maximum cardinality constraints.

max hasPart 1 Body Head Nose
max hasPart 2 Head Eye

The first block states that instances of the class Body have at most one
Head as a part, which in turn has at most one Nose as a part. The second
block states that instancesof the classHeadhaveatmost twoEyesasparts.

Rows containing exact blocks take the form

(n≥2)

where m is the number of properties p that instances of concept ci
must have to instances of concept ci+1, for 1≤ i<n. For each class ci,
an exact block induces the description logic axiom ci⊑(=m) p.ci+1

stating that each instance of ci must be p-related to m unique in-
stances of ci+1.

2.8. Inverse blocks

Inverse blocks state that two object properties are inverses of each
other. If p1 and p2 are defined to be inverse properties, whenever p1
relates an individual x to an individual y then p2 (as the inverse of p1) is
assumed to relate y to x. Rows containing inverse blocks take the form

where p1 and p2 are object properties. A common example of inverse
properties are hasPart and partOf, i.e., if an individual x has an
individual y as a part, then y is by definition a part of x.

2.9. Sufficient blocks

Sufficient blocks are similar to synonym blocks in that they state
equivalences between classes. We consider two types of sufficient
blocks. A sufficient entity block takes the form

( n≥ 2)

where each ci is a class. A sufficient entity block induces the
description logic axiom c1≡c2 ⊓ … ⊓ cn stating that the class c1 is
equivalent to the intersection of the classes c2 through cn. Similarly, a
sufficient relationship block takes the form

where p is an object property, c1 and c2 are classes, and not is an optional
qualifier. A sufficient relationship block (without a not qualifier) induces
thedescription logic axiom c1≡∃p.c2 stating that the class c1 is equivalent
to the set of individuals that are p-related to at least one individual of
class c2. The not qualifier states that the absence of the property is a
defining characteristic of the class. Thus, a sufficient relationship block
containing a not qualifier induces the description logic axiom c1≡¬∃p.c2.
The use of multiple sufficient blocks for a particular class results in a
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single axiom in which each constraint (i.e., class constructor) is
combined via intersection (⊓). For example, the following blocks

sufficient relationship hasPart Mammal Hair
sufficient entity Eutheria Mammal
sufficient relationship not hasPart Eutheria Epipubic Bone

induce the following description logic axioms.

Mammal≡∃hasPart. Hair
Eutheria≡Mamma ⊓ ¬∃has Part. Epipubic Bone

These axioms state that any individual that has Hair as a part is a
Mammal and that any Mammal that does not have an Epipubic Bone
as a part is a Eutheria.

2.10. Comment blocks

There are two types of comment blocks that each provide a
mechanism to add plain-text comments to owlifier tables. A
description block attaches a plain-text comment to classes and
properties. Rows containing description blocks take the form

where the string s is associated as a comment to the class c or
property p. A note block attaches comments to the current ontology.
Rows containing note blocks can occur anywhere within an owlifier
table, and take the form

where s is a comment string.

3. Additional features of owlifier

Here we briefly describe some of the additional features of
owlifier, specifically focusing on the use of disjoint classes, owlifier
reasoning, and additional block syntax.

3.1. Disjoint class inference

OWL is based on the open world assumption, which can lead to a
number of ontology development “pitfalls” for those new to the
language (Smith et al., 2004; Rector et al., 2004). One example is in the
creation of disjoint classes. In particular, unless explicitly asserted,
distinct classes within an OWL-DL ontology are not assumed to be
disjoint. However, in many ontologies a large number of classes are
typically defined as being disjoint (e.g., sibling classes), and stating
these disjoint constraints is often time consuming since each pair of
classes must be given an explicit disjoint assertion. Editors such as
Protege (Knublauch et al., 2004) provide shortcuts via the user
interface to create specific sets of disjoint assertions, e.g., by allowing a
user to define all children of a particular class as disjoint. In general,
however, many users expect such classes to be disjoint by default
(Rector et al., 2004) and this expectation often leads to modeling
errors.

Alternatively, the default assumption in owlifier is that distinct
classes are disjoint. Specifically, as an owlifier table is converted to an
OWL-DL ontology, the system analyzes the class hierarchy structure
and identifies pairs of classes that are: (1) not related via subclass
relations (either direct or indirect subclasses); (2) not defined as
synonyms; and (3) not explicitly defined to overlap via an overlap
block. Each such pair of classes is then asserted by owlifier in the
resulting ontology as being disjoint. As described in (Rector et al.,
2004), undeclared disjoint classes are a common problem in ontology
development using OWL-DL and often limit the utility of reasoning
systems (by limiting the inferences that can be obtained). The
approach employed in owlifier for handling disjoint classes makes the
common expectations of users the default case, which in general
should lead to a more intuitive ontology editing environment and an
overall fewer number of modeling mistakes.

3.2. Reasoning in owlifier

Blocks in owlifier are unambiguous, i.e., for every owlifier block (or
set of blocks in the case of sufficient blocks) there is a well-defined set
of corresponding OWL-DL axioms. This property is important because
it implies that reasoning can be performed over ontologies defined in
owlifier using standard OWL-DL reasoners. We use this capability in
our current owlifier implementation (described further in Section 4)
to verify ontologies defined using owlifier and report possible errors
to users.

In general, new axioms are inferred from an owlifier ontology
primarily from the use of synonym blocks, sufficient blocks, and
transitive blocks (whose inferences are described in the previous
section). For instance, let A, B, and C be classes and P be an object
property. From an axiom A≡B generated from a synonym block, and
an axiom B⊑∃P.C generated from a relationship block, the axiom
A⊑∃P.B would be inferred. Thus, the axioms of a particular class are
“inherited” by all of the synonyms of the class. Similarly, from an
axiom A≡∃P.C generated from a sufficient block, and an axiom B⊑∃P.
C generated from a relationship block, the axiom B⊑A would be
inferred. For both the case of synonym and sufficient blocks, the use of
equivalence permits a number of additional inferences to be made via
an OWL-DL reasoner.

As described in (Rector et al., 2004) additional reasoning can occur
within OWL-DL ontologies when domain and range axioms are
provided (as well as, e.g., property closure axioms). We explicitly do
not consider these constraints in the current version of owlifier
because they also often result in modeling errors for inexperienced
OWL-DL users (Rector et al., 2004). Instead, we adopt the approach of
more traditional description logics, which do not have explicit domain
and range axioms. Although not currently supported in owlifier,
domain and range constraints as well as property closure axioms can
be inferred from given relationship blocks.

3.3. Sparse blocks

To help simplify the creation of class hierarchies and property
sequences (including transitive, cardinality, and sufficient blocks), we
allow for “sparse” blocks that inherit missing information from their
closest proceeding block. For instance the following entity blocks

entity EcologicalHabitat Estuary Bay
entity EcologicalHabitat Estuary Fjord
entity EcologicalHabitat Marsh Tidal Marsh
entity EcologicalHabitat Marsh Salt Marsh

can be equivalently represented in owlifier using the following sparse
blocks.

entity EcologicalHabitat Estuary Bay
Fjord

Marsh TidalMarsh
SaltMarsh

In general, the use of sparse blocks simplifies ontology creation by not
requiring users to enter every redundant field explicitly, which in turn
can simplify the overall layout of the ontology within a spreadsheet.
Additionally, owlifier does not place constraints on the order of blocks
within a spreadsheet. Classes also do not need to be explicitly defined
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within an entity block, e.g., classes without corresponding entity
blocks can be introduced simply through synonym and relationship
blocks. This typically occurs when a particular class does not partici-
pate as a subclass or superclass of another class in the current ontol-
ogy. Taken together, these approaches allow users to enter minimal
information by limiting redundancy and by supporting a range of
inferences, while at the same time reducing the causes of many errors
commonly made in ontology development by non-experts.

4. The owlifier implementation

Fig. 1 shows the general architecture of the owlifier application. A
scientist first creates a spreadsheet containing a set of ontology defi-
nitions using owlifier conventions. The spreadsheet is then exported
as a plain-text file containing the owlifier table, e.g., using a CSV or tab-
delimited format. The owlifier table is then sent to the owlifier
application,which performs a number of steps that include: (i) parsing
the file; (ii) generating the corresponding OWL-DL representation
(e.g., in the current implementation, the OWL-API is used (Horridge
et al., 2007), although Jena (Carroll et al., 2004) could be used aswell);
(iii) validating the ontology and ensuring it is consistent via an OWL-
DL reasoner (e.g., the current implementation uses Pellet (Sirin et al.,
2007)); and (iv) outputting the corresponding OWL-DL file. The
resulting OWL file can then be refined and extended via existing OWL
tools (e.g., Protege or SWOOP). It is also possible for the refined
ontology to be converted back to a corresponding owlifier represen-
tation (shown using dashed lines in Fig. 1). While straightforward to
perform, this “back” conversion is not information preserving sincenot
all OWL-DL statements can be represented through owlifier blocks.
That is, the conversion from OWL-DL to owlifier will only preserve
OWL-DL constructs that are represented by owlifier blocks. In par-
ticular, owlifier does not support a number of OWL-DL language
constructs, including domain and range constraints, datatype proper-
ties, sub properties, property constraints (i.e., functional, symmetric,
and inverse functional), value restrictions, individuals, etc., as well as
various combinations of OWL-DL constructs.

The current implementation of owlifier is written as an open-source
Javaapplication2 and supports a subset of theblocks defined inSection2.
In particular, we are currently extending owlifier to fully support
sufficient blocks (the remaining blocks described in Section 2 are
implemented) as well as the potentially lossy, back conversion from
OWL-DL files to corresponding owlifier blocks. The current implemen-
tation of owlifier is being used within a project focused on integrating
vegetation trait data. As noted above, not all the blocks described here
are yet supported, however, these priority needs are clearly emerging
from our interactionswith the vegetation scientists. Nevertheless, these
scientistswere able to rapidly prototype and revise their trait ontologies
using owlifier, with little to no instruction in formal logic or knowledge
modeling. In addition, owlifier is being used to construct term
hierarchies from large sets of keywords (harvested from existing
metadatadocuments) aswell as to definearticulationsbetweenexisting
ontologies and the observation ontology defined in (Madin et al., 2007).
Aswecontinue touseowlifierwithin theseprojects,we intend to extend
the application as needed to support additional blocks and services.

5. Conclusion

This paper presents a new approach for developing ontologies to
address barriers in ontology development and adoption by ecologists.
Our approach allows scientists to use familiar spreadsheet software
(e.g., frequently used by ecologists for storing and analyzing data) to
create ontologies by filling in a set of templates, or blocks, that
generate OWL-DL class hierarchies, properties, and constraints via the
2 See https://semtools.ecoinformatics.org/owlifier.
owlifier application. This approach can provide a more intuitive and
accessible ontology editing environment for ecologists, especially
compared to existing OWL-based tools that require considerable
expertise in the underlying logic formalisms. Similar to standard OWL
ontologies, owlifier spreadsheets can import and extend existing
OWL-DL ontologies (including those generated from owlifier spread-
sheets), which further supports the community development and
interoperability of ontologies. Blocks in owlifier (or similarly, partially
filled in blocks) can also be reused during ontology creation to help
ensure that future ontology development adheres to best practices
and community standards (e.g., similar to “part-of” properties defined
in the Gene Ontology (Bada et al., 2004)).

Protege provides a variety of ontology editing plug-ins, including a
simple interface for text-based editing of class hierarchies. In (Kola and
Rector, 2007), an approach is described for importing spreadsheet-
based ontology descriptions into Protege. However, this approach aims
at supporting ad-hoc spreadsheet structures by providing an interme-
diate interface for mapping these structures into ontology axioms. This
approach is similar toothers (e.g., (Han et al., 2008;Bizer, 2003;Anet al.,
2006)) for defining mappings from relational data to RDF and OWL
ontology class and instance data. In addition to these approaches, a
number of visual editing environments have been developed to help
novice users create OWL-based ontologies (e.g., (Hayes et al., 2005)). To
thebest of our knowledge, however, our approach is thefirst to consider
an intuitive spreadsheet-based approach together with a detailed set of
templates that can support a large subset of existing OWL constructs. In
addition, we define a number of shortcuts for creating owlifier tables,
including sparse blocks and default semantics (e.g., disjoint classes) that
further simplify ontology creation for end users.

As future work, we plan to extend our current owlifier implemen-
tation to support the full set of blocks defined here as well as introduce
additional blocks, e.g., for creating OWL datatype properties. We also
would like to explore approaches for supporting round-trip conversions
between owlifier tables and OWL-DL ontologies that allow scientists
and knowledge-representation experts to incrementally develop
owlifier-based ontologies. Specifically, we want to extend the owlifier
application so that it can store and re-apply changes made by
knowledge-representation experts that previously modified an OWL-
DL ontology generated by owlifier. For instance, if an OWL-DL ontology
generated from an owlifier spreadsheet is refined and extended by a
knowledge-representation expert, then converted back into an owlifier
ontology that is further edited and extended by a scientist, and then
converted again into anOWL-DL ontology,wewant tomaintain (i.e., re-
apply) the original extensions and edits created by the knowledge-
representation expert that are still relevant (thus supporting lossless
conversions).We also plan to extend the owlifier application to support
translation into the observation ontology framework presented in
(Bowers et al., 2008) and perform additional testing and evaluation of
the owlifier approach with a wide range of ecologists.
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