
The Uni-Level Description: A Uniform

Framework for Managing Structural

Heterogeneity

Shawn Bowers

B.S., University of Oregon, 1998

M.S., OGI School of Science and Engineering at OHSU, 2003

A dissertation presented to the faculty of the

OGI School of Science and Engineering

at Oregon Health & Science University

in partial fulfillment of the

requirements for the degree

Doctor of Philosophy

in

Computer Science and Engineering

January 2004

c© Copyright 2004 by Shawn Bowers

All Rights Reserved

ii

The dissertation “The Uni-Level Description: A Uniform Framework for Managing

Structural Heterogeneity” by Shawn Bowers has been examined and approved by the

following Examination Committee:

Lois Delcambre
Professor, OGI School of
Science and Engineering
Thesis Research Adviser

David Maier
Professor, OGI School of
Science and Engineering

Mark Jones
Associate Professor, OGI School of
Science and Engineering

Leonidas Fegaras
Associate Professor, University of
Texas at Arlington

iii

Dedication

To Evening and Elizabeth

iv

Acknowledgements

I wish to first thank Lois Delcambre, my advisor, whose help and guidance was invalu-

able to me throughout my five years of study at the Oregon Graduate Institute (OGI).

Without her support, the work in this dissertation would not have been possible. Lois

encouraged me to pursue a Ph.D. and introduced me to the subject of databases. She has

helped me gain confidence as a researcher and to more effectively communicate my ideas.

She also had the difficult task of keeping me on track. It has been a pleasure for me to

have the opportunity to work with Lois. And I will always appreciate her patience and

the time she has spent as a mentor to me.

Dave Maier also deserves special thanks. He participated in various discussions with

Lois and I on issues surrounding meta-data-models and data models. Dave also care-

fully reviewed many of our papers, always providing detailed and insightful comments. I

learned many things from Dave not only in his courses on Scholarship Skills, Object Data

Management, and Principles of Database Systems (which Lois and Dave taught together),

but also by working with him on papers and proposals, watching him present research, and

seeing him discuss and debate ideas in research meetings. It is difficult to articulate the

many ways that Lois and Dave have contributed to my personal and professional growth

while I attended OGI. I will always be grateful for their help and advice.

My thesis committee also deserves many thanks, which along with Lois and Dave,

included Mark Jones and Leo Fegaras. Both Mark and Leo provided valuable, detailed

comments and feedback on this dissertation. I also appreciate each members flexibility in

terms of scheduling my defense and in receiving drafts of the dissertation while I was in

San Diego. In addition, I would like to thank Juliana Freire, Peter Heeman, and Renée

Miller for participating in my thesis proposal.

v

There are many students at OGI, and particularly in the database group, that de-

serve thanks. I collaborated most closely with Mathew Weaver and Sudarshan Murthy,

researching various aspects of superimposed information. Not only did I enjoy working

with them, but I was exposed to many aspects of their research, which strengthened my

knowledge and understanding in the area. I would also like to thank Vassilis Papadimos

and William Howe for being genuinely interested in discussing new research ideas and

for engaging in lively debates. Teaching the database-system course with Peter Tucker

enriched my education at OGI, and our technical discussions concerning all aspects of

database management helped me greatly. I also want to thank the students and faculty

that participated in the database reading group for broadening my knowledge of research

issues in data management and computer science in general.

Most importantly, I would like to thank my wife Evening who is my best friend and

who always believed I could finish. And to my daughter Elizabeth, who could not wait

until I was “done working.” The rest of my family also deserves thanks: my grandfather

for gracefully supporting my education and showing endless faith that I can accomplish

whatever I set out to do, my grandmother for her support and understanding, and special

thanks to my parents for their generous help and encouragement.

During the course of this work, I was supported in part through research grants pro-

vided by the National Science Foundation (grant numbers EIA-9983518 and IIS-9817492)

and the Defense Advanced Research Projects Agency (contracts F30602-96-1-0302 and

N66001-00-C-8032). Finally, I would like to thank Bertram Ludäscher, who graciously

helped make it possible for me to finish writing this dissertation and to schedule my thesis

defense while I was working for him at the San Diego Supercomputer Center.

vi

Contents

Dedication . iv

Acknowledgements . v

Abstract . xiii

1 Introduction . 1
1.1 Structural Heterogeneity . 2
1.2 Managing Structural Heterogeneity . 6
1.3 Our Approach . 8
1.4 Outline . 10

2 The Uni-Level Description . 12
2.1 Architecture . 13

2.1.1 Typical Meta-Data-Model Architectures 13
2.1.2 The ULD Architecture . 15

2.2 The ULD Meta-Data-Model . 17
2.3 The ULD Representation Language . 18
2.4 The ULD Query Language . 27

2.4.1 Datalog . 30
2.4.2 Querying ULD Configurations using Datalog 32

2.5 The ULD Constraint Language . 35
2.6 A Partial ULD Axiomatization . 42

2.6.1 Definition of the Core ULD Theory 44
2.6.2 Definition of the ULD Meta-Data-Model Theory 47

2.7 Summary . 52

3 Modeling Data Models . 54
3.1 Expressing Common Constraints . 55

3.1.1 Uniqueness Constraints . 55
3.1.2 Collection Constraints . 57

vii

3.1.3 Inclusion Constraints . 59
3.1.4 Digression: Regular Subset Inclusion Constraints 63

3.2 Traditional Database Data Models . 64
3.2.1 Relational Data Models . 65
3.2.2 Object-Oriented Data Models . 69
3.2.3 Entity-Relationship Data Models . 73

3.3 Structured Data Models for the Web . 79
3.3.1 XML Data Models . 79
3.3.2 RDF Data Models . 88

3.4 Additional Data Models . 93
3.4.1 Topic-Map Data Models . 94
3.4.2 The VIKI Data Model . 97

3.5 Properties of Conformance . 101
3.5.1 Structural Conformance Properties 101
3.5.2 Process-Oriented Conformance Properties 105
3.5.3 The ULD Conformance Properties 105

3.6 Summary . 106

4 Transformation .109
4.1 The ULD Transformation Language . 109
4.2 Transformation Examples . 114

4.2.1 E-R to Relational Transformations 115
4.2.2 XML to Relational Transformations 118
4.2.3 Schema Transformation . 125
4.2.4 Transformations for Standard Serializations 127

4.3 Analyzing ULD Transformations . 131
4.3.1 Well-Typed Transformations . 131
4.3.2 Mapping Rules and Data-Model Constraints 138
4.3.3 Cardinality Constraints on Conformance 140
4.3.4 Inference and Transformation . 141

4.4 Summary . 145

5 Incremental Navigation .148
5.1 Motivating Examples . 149
5.2 Navigation Operators . 150
5.3 Navigation Bindings as ULD Queries . 153
5.4 Higher-Level Binding Specifications . 155

viii

6 Conclusion .161
6.1 Implementation Issues . 162
6.2 Related Work . 166
6.3 Contributions . 169
6.4 Future Work . 171

Bibliography .174

Biographical Note .182

ix

List of Tables

3.1 Structural conformance properties of data models. 102
3.2 Process-oriented conformance properties of data models. 106

x

List of Figures

1.1 An example of a relational schema and instance. 2
1.2 An example of an XML schema and instance. 3
1.3 An example of an RDF schema and instance. 4
1.4 The ULD-enabled environment where generic tools can access information

stored in various data models. 10

2.1 A standard meta-data-model architecture. 13
2.2 The ULD meta-data-model architecture. 16
2.3 The standard meta-data-model architecture (left) captured in the ULD ar-

chitecture (right). 16
2.4 An example of data without corresponding schema represented in the ULD. 17
2.5 The syntax for ULD construct and instance expressions. 19
2.6 The default uldValue and uldValuetype constructs for representing scalar

types. 24
2.7 The interpretation of ULD configurations. 35
2.8 The naming conventions used in specifying ULD axioms. 44
2.9 The core ULD axioms for describing basic structure restrictions. 45
2.10 The core ULD axioms describing conformance cardinality restrictions. . . . 46
2.11 The ULD meta-data-model axioms that define the allowable construct types

and two structural restrictions. 47
2.12 The axioms for tuple structures in the ULD meta-data-model. 48
2.13 Two general axioms for collection structures in the ULD meta-data-model. 49
2.14 The axioms for set structures in the ULD meta-data-model. 49
2.15 The axioms for bag structures in the ULD meta-data-model. 50
2.16 The axioms for list structures in the ULD meta-data-model. 51
2.17 The axioms for union definitions in the ULD meta-data-model. 52

3.1 An example of a Topic Map represented graphically. 95
3.2 An example of a hypertext and its type definition in VIKI. 99

xi

4.1 The edge-based, tree representation of the XML document of Figure 1.2.
Nodes are annotated with their ordinal number and levels are annotated
with their sourceId value. 119

4.2 The result of applying the edge transformation. 120
4.3 The result of applying the attribute transformation. 123
4.4 The result of applying the RDF serialization mapping. 128
4.5 The basic type annotation rules for mappings. 134
4.6 The collection type annotation rules for mappings. 134
4.7 The selector, conformance-cardinality, and identifier-generation type anno-

tation rules for mappings. 135
4.8 The typing rules for ULD mappings. 137

5.1 A high-level binding for direct navigation of RDF. 155
5.2 The Datalog rules to compute links and locations based on a binding-

constructs specification. 158
5.3 An example of labeled instances for RDF. 159

6.1 The basic architecture of the ULD transformation engine. 163
6.2 The basic architecture of the ULD navigation prototype. 165
6.3 An architecture for ULD transformation using non-materialized views. . . . 166

xii

Abstract

The Uni-Level Description: A Uniform Framework for Managing

Structural Heterogeneity

Shawn Bowers

Supervising Professor: Lois Delcambre

Information management systems (such as database and knowledge-based systems) are

based on data models, which provide basic structures for organizing and storing data. A

number of data models are in use, and each provides a slightly different set of structures.

For instance, information is represented as tables in the relational data model, as ordered

trees in semi-structured data models (such as XML), and as directed graphs in semantic

networks (such as RDF). With several distinct data models available, developers can select

the most convenient representation for their particular need. However, the use of multiple

data models introduces structural heterogeneity, making it difficult to combine information

and exploit generic tools (for example, for querying or browsing).

This dissertation describes a new framework called the Uni-Level Description (ULD)

that can accurately store and accommodate information from a broad range of data mod-

els. The ULD consists of a meta-data-model to describe the basic data structures used by

a data model, and a uniform representation to store information within a source, includ-

ing the data-model structures, schema (if present), and instance data. The ULD extends

existing meta-data-models by allowing uniform access to schema and data, by permitting

data models with non-traditional schema arrangements, and by providing a language for

representing data-model constraints.

xiii

The two primary motivations for our work are (1) to study the basic structural ca-

pabilities offered by data models and (2) to define languages for enabling interoperability

among sources with structural heterogeneity. We use the ULD to describe a wide range of

data models, including those that allow optional and partial schema. We present a query

and transformation language (based on Datalog) for accessing and converting information

among heterogeneous sources. We demonstrate the flexibility of the transformation lan-

guage by defining a number of structural mappings. And finally, we use the ULD as the

basis for generic navigation, where a single set of operators can be used to discover and

browse information in structurally heterogeneous sources.

xiv

Chapter 1

Introduction

Information management systems provide a range of tools for working with data. For ex-

ample, most systems provide tools to create, manipulate, and query data, and to maintain

data consistency. Although not always obvious, the most fundamental tool an information

system provides is its data model—a fixed set of data structures for storing, organizing,

and processing information.

A data model defines a language for representing both conceptual information (in

a schema) and instance data. A schema describes a domain of interest and typically

prescribes an organization for data. Schema and data are represented in a data model

using named data structures, called constructs [79]. The challenge when creating a data

model is to select an appropriate mix of constructs that can both conveniently represent

a wide range of information and enable tools for efficiently managing data.

In this dissertation, we study the structuring capabilities of data models. A large

number of data models exist and are being used, and each provides a different set of

constructs for representing information. Part of our motivation for examining data models

is to enable interoperability—we envision a generic framework that can support tools for

exploiting information, regardless of the data model used for representation. Here, we

focus on the structural differences among data models and provide languages for expressing

and resolving these differences.

This chapter introduces the problem of structural heterogeneity, which arises in part

from the use of different data models, describes existing approaches for managing struc-

tural heterogeneity, introduces our approach (which we call the Uni-Level Description),

and concludes with an outline of the rest of this dissertation.

1

2

Movie
mid : integer title : string runtime : integer genre : string company : string
1 ‘The Usual Suspects’ 106 ‘Thriller’ ‘Gramercy’
2 ‘Meet the Parents’ 108 ‘Comedy’ ‘Universal’

Cast
mid : integer character : string actor : string
1 ‘Roger Verbal Kint’ ‘Kevin Spacey’
2 ‘Jack Byrnes’ ‘Robert De Niro’

Review
mid : integer rating : float source : string
1 8.7 ‘IMDB’
2 7.0 ‘IMDB’

Figure 1.1: An example of a relational schema and instance.

1.1 Structural Heterogeneity

Figures 1.1, 1.2, and 1.3 show similar schema and instance data represented in the rela-

tional [2, 33, 71], XML [22], and RDF [47] data models. We describe these data models

below to highlight the basic structural differences that occur when similar information is

represented in disparate data models.

One of the most widely used data models is the relational model. The primary con-

struct of the relational model is a table, which is similar to a mathematical relation. As

shown in Figure 1.1, a relational schema consists of a set of table definitions, typically

called relations, containing attribute names and corresponding scalar types, called do-

mains. A table instantiates a relation, and consists of tuples, where each tuple has exactly

one value for each attribute. Figure 1.1 shows three table definitions and their correspond-

ing tables. A table definition can designate one or more attributes as a primary key, where

every tuple in the table has a distinct collection of values for the attributes. Primary keys

are usually underlined, as shown in Figure 1.1. A foreign key may also be defined between

attributes in two relations, where a set of values in one table contains key values in the

other table, forming a value-based relationship between the tables. (Foreign keys could be

defined for Figure 1.1, for example, between the Cast and Movie, and Review and Movie

tables.)

The Extensible Markup Language (XML) is a more recent data model that is used for

3

DTD Schema

<!ELEMENT moviedb (movie*)>
<!ELEMENT movie (title,studio,genre*,actor*)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT studio (#PCDATA)>
<!ELEMENT genre (#PCDATA)>
<!ELEMENT actor (#PCDATA)>
<!ATTLIST actor role CDATA #REQUIRED>

XML Document

<?xml version="1.0"?>
<moviedb>
<movie>
<title>The Usual Suspects</title>
<studio>Gramercy</studio>
<genre>Thriller</genre>
<actor role="Supporting Actor">Spacey, Kevin</actor>

</movie>
<movie>
<title>Meet the Parents</title>
<studio>Universal</studio>
<genre>Comedy</genre>
<actor role="Leading Actor">De Niro, Robert</actor>

</movie>
</moviedb>

Figure 1.2: An example of an XML schema and instance.

information interchange. In XML, a document is represented as a text file that defines

a labeled, ordered tree. Schema languages for XML are based on tree grammars, which

specify regular expressions over node labels. An example schema for XML (expressed as a

document type definition (DTD) [22]) and an instance document are shown in Figure 1.2.

Schemas for XML consist of element and attribute definitions. An element represents a

node in a tree that can contain a set of attribute-value pairs and has an ordered collection

of children nodes, where each child node is either an element or character-string data.

The Resource Description Framework (RDF) is the primary representation scheme

for the Semantic Web [11]. The RDF data model is based on directed graphs, similar

to semantic networks [53, 82], and is designed for annotating Web-content with semantic

information. An example schema and instance are shown in Figure 1.3. Nodes in the graph

are called resources, which are connected using properties. In RDF, statements about

4

#ks

#a1

oscar

comedy
thriller award

actor
film

RDF instance

RDF schema

rdf:type

rdf:type
rdf:type

‘Supporting Actor’

recipient

category

‘The Usual Suspects’

title #m1
won

involved hasName
‘Kevin Spacey’

recipient
category

hasTitle

literal

hasName literal

won

involved

literal

Figure 1.3: An example of an RDF schema and instance.

resources are made using triples, which relate a subject resource to an object resource

through a property (sometimes called a predicate in a triple). RDF Schema (RDFS) [23]

is a schema language for RDF that provides constructs for defining classes, subclasses,

properties, and subproperties. As shown in Figure 1.3, the schema information is located

at the top of the figure, where subclasses are drawn using a special relationship (for

example, the “oscar” class is a subclass of “award”). Instances are located at the bottom

of the figure, where relationships labeled with rdf:type connect instances to classes.

The relational model, XML, and RDF are structurally different data models. The

relational model represents information using relations, XML using trees, and RDF using

graphs.1 One advantage of having several different data models is that users can select

the right representation for their particular need, for example, based on the structural

properties of the data they wish to represent. However, multiple representations introduce

structural, model-based heterogeneity, making it difficult to combine information from

different sources or to exploit information using generic tools, for example, for querying

or browsing.

1Although not discussed in the previous examples, these data models also have fundamental differences
in the way schemas restrict instance data, which we describe further throughout this dissertation.

5

Structural heterogeneity [40] can occur at various levels within a database. The pres-

ence of different data models introduces fundamental differences in how similar informa-

tion is structured. Different schemas can also exhibit structural heterogeneity. Namely,

two information sources may contain data from similar domains, but differ in how each

schema organizes and classifies information. For example, the schemas for XML and RDF

shown in Figures 1.2 and 1.3, respectively, have the following differences, even though they

describe the same basic domain.

• Each schema includes information not found in the other. For example, the XML

schema defines studio information (that is, the company that created the movie),

whereas the RDF schema defines award information (that is, the awards won by the

movie).

• The schemas represent conceptually identical information using different names and

structural types. For example, the XML schema uses the label “movie,” whereas

the RDF schema uses “film.” In addition, the RDF schema defines a film title as a

direct property of a film and a film is allowed to have multiple titles. In the XML

schema, a title is modeled as a sub-element of a movie and a movie has exactly

one title. Note also that, in the RDF example, film and title are represented using

different data-model constructs, whereas in the XML example, the same data-model

construct is used to represent title and movie.

• The schemas contain schematic differences [57], where schema information in RDF

is represented as data in XML. In particular, the RDF schema represents a genre as

a class in the schema, whereas in XML a genre is represented as a data item (in this

case, as plain text).

Finally, individual data values can also exhibit structural heterogeneity. For example, in

the XML instance of Figure 1.2, the names of actors are stored last-name first, whereas

in the RDF instance, the names of actors are stored first-name first. This example is a

simple case, and in general, differences in data values can be complex.

6

1.2 Managing Structural Heterogeneity

Most approaches for managing structural heterogeneity focus on resolving differences in

schema as opposed to differences in data models. These approaches, which we discuss here,

resolve heterogeneity by providing support for either schema transformation or schema

integration.

Schema transformation approaches [1, 12, 32, 35, 68, 69] provide techniques to convert

valid instance data under one schema to valid instance data under another schema, where

the source and target schemas are assumed to be heterogeneous. These approaches typ-

ically define a special-purpose, query-based transformation language to express schema

mappings that, when executed, perform the desired instance-data conversion. In addi-

tion, a number of approaches attempt to determine schema mappings [70] automatically

(or semi-automatically) by finding matching names and structures within the schemas.

Schema integration approaches [10, 24, 38, 40, 52, 62, 64, 75] focus on combining

information sources with heterogeneous schemas into a single collection of data with a

single schema (called a global schema). Many approaches [24, 52, 62, 75] construct a virtual

integrated collection, where a query against the global schema is executed by a mediator,

which rewrites the query into one or more local queries (using the local schemas), combines

the results of each local query, and returns the integrated result. Schema integration

requires schema transformation to resolve heterogeneity. In particular, schema mappings

are defined as views (expressed as queries) between local and global schemas.

Approaches for schema transformation and integration typically assume all schemas

and (possibly) data are represented in, or converted to the same, common data model.

The common data model is often designed specifically for the approach.

In general, however, developers still use ad hoc solutions for resolving structural het-

erogeneity [12]. By ad hoc, we mean special-purpose programs, typically written in pro-

cedural languages, for resolving specific instances of structural heterogeneity. Even in

schema transformation and integration approaches, special-purpose programs are used to

map between data models, for example, to convert information in and out of a common

data model. Writing programs to convert information between data models is often a

7

time-consuming and error-prone task that leads to complex programs that are difficult

to maintain and reuse. The following list highlights some of the reasons why converting

information between data models, especially using ad hoc solutions, is difficult. We use

the term data-model mapping to denote a mapping from information represented in one

data model to information represented in another data model, which in general may also

require schema mapping.

• Data models contain different modeling constructs. Although obvious, having dis-

parate constructs means that mappings between data models are rarely one-to-one,

and there are usually many different and equally “correct” ways to convert informa-

tion between data models. For example, numerous approaches have been proposed

for converting XML into the relational model [14, 77], where each conversion has

benefit in certain situations.

• There may be different versions of the same data model. For example, many ver-

sions of the E-R data model have been defined [27, 28], each with slightly different

features. In particular, some E-R models permit only binary relationships, whereas

others allow n-ary relationships; and some E-R data models permit both entities

and relationships to have attributes, whereas others do not allow attributes on rela-

tionships.

• Desired mappings between data models may be partial. In particular, some constructs

or schema types may not be applicable to the target information source. In gen-

eral, partial mappings result in “lossy” transformations, where the original database

cannot be rebuilt from the converted information.

• Mappings between data models may require encoding conventions. Because data-

model constructs differ, conventions are often used to represent the desired informa-

tion within a target data model, when the target data model does not contain the

necessary constructs. For example, conventions are heavily used in most XML-to-

relational mappings, because the relational model does not have explicit constructs

for representing trees. The use of conventions introduces implicit assumptions and

8

dependencies between source and target databases.

• Not all data models require schema, and some allow multiple levels of schema. In

general, data models that allow non-traditional schema arrangements are problem-

atic for schema transformation and integration approaches, because not all data of

interest may have corresponding schema information, and schemas may be further

organized by meta-schema structures [43, 59]. By non-traditional, we mean schema

arrangements not typically allowed in traditional data models, such as permitting

partial, optional, and multiple levels of schema. Similarly, schematic differences and

differences in how data is represented also generally require complex transformations

[3, 57].

• Data models have inherent constraints. Resolving structural heterogeneity is com-

plicated by data-model constraints. For example, ad hoc solutions must be aware of

constraints to avoid incorrect conversions. Data-model constraints can range from

simple, for example, relational tables have a corresponding table definition, to com-

plex, for example, the restriction placed on tables under primary and foreign keys.

1.3 Our Approach

In this dissertation, we describe a high-level, declarative language for expressing and

manipulating data models, called the Uni-Level Description (ULD) [19, 20]. With the

ULD, it is possible to describe the constructs and constraints of a wide range of data

models. In addition, the ULD provides uniform access to data-model constructs, schema,

and instance-data, which enables flexible transformation rules for resolving structural

heterogeneity and provides a means to implement generic operations over data models.

The ULD is motivated by a simple observation: most data models use only a small set

of basic data structures, such as atomic, tuple, and collection types, composed in various

ways, to store information. Our approach is to describe the constructs of a data model

using these basic structures and then instantiate them to describe the schema and instance

information that is present in a data source. The goals of the ULD are as follows.

9

• Permit “faithful” representations of a wide variety of data models. For example,

the relational model should be described as having relations, tables, tuples, and so

on, without requiring these constructs to be converted to the constructs of another,

common data model.

• Allow a single and complete representation of an information source, including its

data, schema(s) if present, and data model.

• Provide uniform access to information within a source. In particular, the ULD should

be a uniform representation, much like RDF, so that query or navigation operators

can access the data model and schema information as easily as data. More than that,

the data model, schema, and data information should be accessible at the same time,

for example, in the same transformation rule.

• Accommodate information with flexibility regarding the use of schemas. We want

to represent information where the schema is required (as in the relational model),

where schema can be missing (as in XML), and where there can be multiple levels

of schema (as in RDF).

• Support data-model constraints. The ULD should provide an expressive enough

language to capture inherent data-model constraints.

A key characteristic of the ULD is its use of explicit and distinct instance-of rela-

tionships for representing information. These relationships enable uniform access to infor-

mation while clearly distinguishing between data-model constructs, schema (when appro-

priate), and data. This approach differs from data models that overload the instance-of

(or type) relationship to provide uniform representation (such as RDF, Telos [43, 59], or

other semantic-network-based data models). In addition, having distinct instance-of rela-

tionships allows a data-model configurer to place explicit constraints on schema-instance

conformance, permitting accurate descriptions of a wide range of data models.

We envision an environment where arbitrary data sources are easily described using

the ULD, enabling the use of generic, ULD-based tools that can work over arbitrary infor-

mation sources, as shown in Figure 1.4. We describe two such tools that exploit the ULD

10

U
LDXML

U
LDRDF

Relational U
LD

Generic
Transformation
Language

Generic
Browser

Figure 1.4: The ULD-enabled environment where generic tools can access information
stored in various data models.

in this way. The first is a transformation language that allows powerful transformation

rules expressed in Datalog (or Prolog) for defining and executing mappings to convert in-

formation from one source to another in the presence of different schemas or data models.

The other is a browser, supported by a navigational API against the ULD, that permits

both näıve users (for example, users who do not know, or need to know, what an XML

element or attribute is) and sophisticated users (for example, agents or crawlers) to access

information sources in a generic manner.

1.4 Outline

The rest of this dissertation is organized as follows. In Chapter 2 we describe the ULD

and the associated languages for representing information sources, expressing queries (to

retrieve information represented in the ULD), and specifying constraints. In Chapter 3

we demonstrate the ULD by giving complete descriptions for a wide range of data mod-

els. Chapter 3 also provides properties to classify data models in terms of the types of

schema arrangements they allow. The classification is inspired by the ULD architecture

and its flexibility in describing schema-instance relationships. In Chapter 4 we introduce

the ULD transformation language, which is an application of the ULD architecture. We

demonstrate the ability of the transformation language to express flexible mappings for

11

resolving structural heterogeneity, including differences in data models and schemas. In

Chapter 5 we describe a navigation interface for generically browsing information repre-

sented in disparate data models. The navigation interface is an example of a generic tool:

the same operators are used to navigate information regardless of the data model used

for representation. Finally, in Chapter 6 we conclude by discussing ULD implementation

issues, related work, our contributions, and future work.

Chapter 2

The Uni-Level Description

In this chapter, we introduce the Uni-Level Description (ULD), which is both a meta-

data-model (that is, it can describe data models), and a distinct representation scheme: it

can directly represent both schema and instance information (expressed in terms of data

model constructs). We also describe the ULD query and constraint languages, and give a

formal definition of the underlying theory of the ULD.

This chapter is organized as follows. In Section 2.1, we describe existing meta-data-

model architectures and contrast them with the architecture of the ULD. In Section 2.2, we

present the ULD meta-data-model (that is, a specific set of basic structures for the ULD),

which we use in the rest of this dissertation. In Section 2.3, we describe an implementation-

independent syntax for representing information in the ULD and use it to describe the

relational, XML, and RDF data models. In Section 2.4, we describe a declarative query

language for the ULD based on Datalog. The ULD query language provides a convenient,

high-level language for uniformly accessing data model, schema, and instance data. We

also give a formal, logic-based interpretation of the ULD representation language. In

Section 2.5, we describe a constraint language for the ULD, which extends the ULD query

language of Section 2.4, and can be used to specify data-model constraints. Finally, in

Section 2.6, we give an axiomatization for the ULD using the constraint language, which

is enabled by the flexibility of the ULD architecture, and the ability of the query language

to uniformly access constructs, schema, and data in the ULD.

12

13

class constructMeta-Schema

(Meta-Constructs) meta-constructMeta-Data-Model

actor (class)

(Constructs)

Schema

Data "Robert De Niro" (object)

Figure 2.1: A standard meta-data-model architecture.

2.1 Architecture

2.1.1 Typical Meta-Data-Model Architectures

The standard architecture for representing information consists of three levels: data model,

schema, and (instance) data. A meta-data-model adds a new level of abstraction to the top

of this architecture to describe one or possibly more data models, as shown in Figure 2.1.

(Note that the architecture of Figure 2.1 is more general than most existing architectures

[5, 6, 8, 31, 32, 78].) As shown, the architecture consists of four levels. The top level

represents the meta-data-model, the second level from the top represents the meta-schema

(that is, the data model), the third level represents schema, and the bottom level represents

instance data. A meta-schema defines the set of structural constructs provided by a data

model for representing schema; and schemas are represented as instantiations of the meta-

schema constructs. For example, the meta-schema for the relational data model would

describe relations, attributes, primary and foreign keys, and so on.

In a self-describing data model [54], the meta-data-model and the data model are the

same—that is, the same storage structures are used for schema and data. For example,

a self-describing representation of the relational data model would encode a relational

schema (that is, the set of relation names, their attributes, foreign and primary keys, and

domains) using a fixed set of relations, called the catalog. The catalog can then be queried,

for example, to find the attributes of a relation.

In contrast to a self-describing data model, a meta-data-model can be used to enable

14

interoperability among heterogeneous sources that use disparate data models (as opposed

to just the relational model, for example). In this case, each heterogeneous source is

described using the same meta-data-model, which provides a common representation for

accessing schema (via the meta-schema structures).

A number of approaches use E-R (entity and relationship) structures to define meta-

schemas and their corresponding schemas [5, 6, 8, 31, 61, 78]. In this case, meta-schema

constructs are defined as patterns, or compositions of entity and relationship types. These

types are used to define entities and relationships representing corresponding schema items.

Using this approach, a meta-schema for an object-oriented data model would contain a

class construct represented as an entity type (called class) with a name attribute and

relationships to other constructs (for example, that represent class attributes). A partic-

ular object-oriented schema is then represented as a set of entities and relationships that

instantiate these meta-schema types. We note that, in most meta-data-model architec-

tures (YAT [32] being an exception), data (the bottom level of Figure 2.1) is stored in the

database system, and is not represented in the meta-data-model architecture explicitly.

An important assumption made by existing meta-data-model approaches is that data

(the bottom level of Figure 2.1) must adhere to the schema (the third level of Figure 2.1).

That is, all data is considered to be an instance of existing schema definitions. This

assumption stems from traditional database systems, which generally require complete

schema. That is, in a traditional database system, all data must satisfy all of the con-

straints imposed by a schema. However, a number of data models also permit optional

and partial schema definitions, in which some or all of the data does not conform to a

defined schema and, in the case of a partial schema, data items that conform to a schema

can be mixed with data items that do not have associated schema definitions. Optional-

and partial-schema data models cannot be represented with the assumptions underlying

the architecture of Figure 2.1. Namely, there is no way to go from meta-schema directly

to data without first going through schema—the meta-schema only defines structures for

representing schema.

15

2.1.2 The ULD Architecture

In contrast to Figure 2.1, the ULD uses the architecture1 shown in Figure 2.2. The

ULD meta-data-model (shown as the top level in Figure 2.2) consists of construct types

(that is, meta-constructs) that denote structural primitives. The middle level uses the

structural primitives to define both data and schema constructs, possibly with conformance

relationships between them. For example, in Figure 2.2, the class and object constructs

are related through a conformance link (labeled conf) and their corresponding construct

instances in the bottom layer (that is, actor and the object with the name ‘Robert De

Niro’) are related through a data instance-of link (labeled d-inst). It is important to

note that both schema and data constructs of a data model are explicitly represented in

the ULD. In existing meta-data-model architectures, only schema constructs (as shown

in Figure 2.1) are defined in the meta-schema—data constructs are assumed to implicitly

follow from the definition of the meta-schema. The bottom level of Figure 2.2 represents

schema and data as instances of constructs, connected by d-inst links when appropriate.

The relationship between the ULD architecture and the architecture of Figure 2.1 is shown

in Figure 2.3. In particular, the ULD architecture subsumes the typical meta-data-model

approaches of Figure 2.1.

The ULD distinguishes three kinds of instance-of relationships. Constructs introduced

in the middle layer are necessarily instances of construct types in the meta-data-model,

represented with ct-inst instance-of links. Similarly, every item introduced in the bottom

layer is necessarily an instance of a construct in the middle layer, represented with c-inst

instance-of links. Finally, an item in the bottom layer can be an instance of another item

in the bottom layer, represented with d-inst instance-of links, as allowed by conformance

relationships specified in the middle layer. Note that we distinguish the term instance

from the term instance-of. As an example, the bottom layer of the ULD architecture

1The ULD is a flat representation in that all information stored in the ULD is uniformly accessible
as a single level. For example, a single query or transformation rule can access data-model constructs,
schema, and instance data. The name Uni-Level Description was chosen to reflect this property of the
ULD, that is, of being a flat representation. However, as shown in Figure 2.2, information stored in the
ULD is logically divided into three layers using explicit instance-of relationships (which we describe in this
chapter).

16

Meta-Data-Model
(Construct Types)

Data Model
(Schema
Constructs)

Data Model
(Data
Constructs)

Schema
(Instances)

Data
(Instances)

‘Robert
De Niro’

actor
d-inst

c-instc-inst

class
conf

object

ct-instct-inst

Figure 2.2: The ULD meta-data-model architecture.

De Niro’
‘Robertactor

d-inst

c-instc-inst

class
conf

object

ct-instct-inst

 "Robert De Niro" (object)

actor (class)

class construct

meta-construct

Figure 2.3: The standard meta-data-model architecture (left) captured in the ULD archi-
tecture (right).

consists of construct instances (that is, data and schema items), and items within the

architecture are associated using instance-of relationships (that is, ct-inst, c-inst, and

d-inst). A construct instance may be a d-inst of another construct instance (all in the

bottom layer), and must be a c-inst of at least one construct (in the middle layer).

The ULD is able to represent a wide range of data models using the flexibility offered

by the conf and d-inst relationships. For example, in XML, elements are not required to

conform to element types. In this case, the XML element would not have a d-inst link

to an XML element type (because there are no element types explicitly defined that the

element conforms to). Figure 2.4 shows the case where data is represented in the ULD

without corresponding schema.

The ULD represents an information source as a configuration, which contains the

17

‘Robert
De Niro’

class

ct-inst ct-inst

object
conf

c-inst c-inst

Figure 2.4: An example of data without corresponding schema represented in the ULD.

constructs of a data model, the construct instances (both schema and data) of a source,

and the associated conformance and instance-of relationships. Thus, a configuration can be

viewed as an instantiation of Figure 2.2. Each configuration uses a finite set of identifiers

to denote construct types, constructs, and construct instances as well as a finite set of

ct-inst, c-inst, conf, and d-inst relationships. Together, the use of identifiers with explicit

instance-of relationships allows all three levels of information in Figure 2.2 to be stored in

a single configuration—enabling direct and uniform access to all data-model, schema, and

data information in a source. In a ULD configuration, all construct and construct-instance

identifiers have exactly one associated value, where a value instantiates a meta-data-model

structure.

2.2 The ULD Meta-Data-Model

This section briefly describes the choice of structures we use as the construct types of

the ULD meta-data-model. We describe these structures in more detail in the following

section.

The ULD meta-data-model contains primitive structures for tuples, that is, sets of

name-value pairs; set, list and bag collections; atomics, for scalar values such as strings and

integers; and unions, for representing non-structural, generalization relationships among

constructs. The construct-type identifiers for these structures are denoted struct-ct, set-ct,

list-ct, bag-ct, atomic-ct, and union-ct, respectively.

18

Scalar values such as strings and integers are treated as subsets of the construct-

instance identifiers in a configuration. This choice of representation leads to more concise

configurations, however, primitive values could also be represented as distinct values,

disjoint from the set of identifiers.

Tuple and collection structures can be nested, but only through identifiers. For in-

stance, set values always contain a unique collection of identifiers, as opposed to a unique

collection of values. Thus, to construct a nested set value, we would create an identifier

i1 whose value is a set containing an identifier i2, where i2’s value is a set.

The structures of the ULD meta-data-model are similar to those found in E-R [27] and

object-oriented database (OODB) [48] data models. Unlike the E-R data model, however,

the ULD does not treat relationships as first class; a relationship in the ULD is specified

within a tuple structure, which is similar to some OODB data models. The ULD also

has explicit structures for representing collections, which have identifiers and can stand

alone or be nested within tuples and other collections. Thus, collections in the ULD serve

to represent extents, set-valued relationships, and collection-valued attributes in OODB

data models. Finally, the ULD uses union types, and does not provide isa relationships

between structures, which are found in OODB and some E-R data models. We note that

other meta-data-models, for example, with different structures or allowable compositions

of structure, are possible without requiring changes to the ULD architecture of Figure 2.2.

However, the particular meta-data-model we have chosen is rich enough to express a wide

variety of existing data models (as we show in Chapter 3) without requiring complex data

structures and nested values, which require a more complex representation and query

language.

2.3 The ULD Representation Language

In this section, we describe an implementation-independent language for representing con-

figurations in the ULD. By implementation-independent, we mean a language that can

be used regardless of the underlying storage of a configuration, for example, a relational

database or a set of facts in a deductive database. Thus, the ULD representation language

19

E ::= C | D

C ::= construct c = (CS | CC | CA | CU)
CS ::= {a1->c1, ..., an->cn} [F]
CC ::= (set | bag | list) of c1 [F]
CA ::= atomic [F]
CU ::= c1 | c2 | ... | cn

F ::= conf(domain=x, range=y):c′

D ::= data d = (DS | DC | DA) [I]
DS ::= c {a1:d1, ..., an:dn}
DC ::= c [d1, ..., dn]
DA ::= c
I ::= d-inst:d1, d2, ..., dn

Figure 2.5: The syntax for ULD construct and instance expressions.

can be viewed as a high-level syntax for defining ULD configurations. To illustrate, the

following examples (Examples 1, 2, and 3 below) use the ULD representation language

to describe simplified versions of the relational, XML, and RDF data model constructs,

respectively.2 (Chapter 3 defines these and other data models in more detail.) Note that

there are potentially many ways to describe a data model in the ULD, and these examples

show only one choice of representation.

As illustrated in Examples 1, 2, and 3, a construct definition can take one of the

following forms. Expressions surrounded by [] square brackets are optional and expressions

of the form (a|b|c) denote a choice between expressions a, b, or c. The syntax for expressing

constructs and data instances in the ULD, each represented as a ULD expression E, is

given in Figure 2.5. Note that the symbols [] and | are tokens in the language, whereas

[] and | are not.

• construct c = {a1->c1,a2->c2,...,an->cn} [conf(domain=x,range=y):c′]

This expression defines a tuple-construct c as a ct-inst of construct type struct-ct,

where a1 to an are distinct strings, n ≥ 1, and c1 to cn and c′ are construct identifiers.

Each expression ai->ci is called a component of the construct c where ai is called the

2We use uldValue and uldValuetype as special constructs to denote scalar values and value types,
which we describe later.

20

component selector. If the conf expression is present, construct instances of c may

conform (that is, be connected by a d-inst relationship) to construct instances of c′

according to the domain and range constraints on the expression. If the conformance

expression is not present, conformance is not permitted for the construct, that is,

there cannot be a d-inst relationship for the construct’s instances. The cardinality

constraints on conformance, shown as x and y above, restrict the participation of

associated instances in d-inst relationships, for both the domain and range of the

relationship, to either: exactly one, denoted as 1; zero or one, denoted as ?; zero or

more, denoted as *; or one or more, denoted as +.

• construct c = (set | bag | list) of c1 [conf(domain=x,range=y):c′]

This expression defines a collection-construct c as a ct-inst of either set-ct, bag-ct, or

list-ct. The definition restricts c’s construct instances to collections whose members

must be instances of the construct c1. In addition, for instances of a set construct

c, each member must have a distinct identifier.3 This construct can also contain a

conformance definition.

• construct c = atomic [conf(domain=x,range=y):c′]

This expression defines an atomic type c as a ct-inst of construct type atomic-ct.

This construct can also contain a conformance definition.

• construct c = c1 | c2 | ... | cn

This expression defines a union-construct c as a ct-inst of construct type union-

ct, where c1 to cn are distinct construct identifiers for n ≥ 2 such that, for all ci,

for 1 ≤ i ≤ n, c $= ci. We also require acyclic union definitions, that is, no two

constructs can be directly (or indirectly) unions of each other. Each instance of c1

to cn is considered an instance of c, however, we do not allow instances of only c

directly. A union construct provides a simple mechanism to group heterogeneous

structures (for example, atomics and structs) into a single, union type, as opposed

3We could similarly define a construct type, for example, val-set, that would require unique values,
using deep equality [48], as opposed to identifiers, using shallow equality [48]. For simplicity, we only give
identifier-based sets, but provide a language for expressing other constraints such as value restrictions on
sets.

21

to isa relationships, which offer inheritance semantics, and only group like structures

(for example, classes).

For the relational data model shown in Example 1, tables and relation types are one-

to-one such that each table conforms to exactly one relation type and vice versa. Similarly,

each tuple in a table must conform, as shown by the range restriction of 1, to the table’s

associated relation type. We assume each relation type can have at most one primary key,

for simplicity. Note that in the example below, we do not define the constraints implied

by a key. In Chapter 3, we discuss the use of data-model constraints in more detail.

(Example schema and instance data for the relational data model are presented later, in

Example 4.)

Example 1 (The relational data model)

% schema constructs

construct relation = {hasName->uldString, hasAtts->attList}

construct attList = list of attribute

construct attribute = {hasName->uldString, hasDomain->uldValuetype}

construct pKey = {forRel->relation, keyAtts->pKeyAttList}

construct fKey = {forRel->relation, toRel->relation, keyAtts->fKeyAttList}

construct pKeyAttList = list of attribute

construct fKeyAttList = list of attribute

% data constructs

construct table = bag of tuple conf(domain=1,range=1):relation

construct tuple = list of uldValue conf(domain=*,range=1):relation

The XML data model [22] shown in Example 2 includes constructs for element types,

attribute types, elements, attributes, content models, and content, where element types

contain attribute types and content specifications, elements can optionally conform to

element types, and attributes can optionally conform to attribute types. We simplify

content models to sets of element types for which a conforming element must have at least

one subelement for each corresponding type.

22

Example 2 (The XML with DTD data model)

% schema constructs

construct pcdata = atomic

construct cdata = atomic

construct elemType = {hasName->uldString, hasAtts->attDefList,

hasModel->contentDef}

construct attDefList = set of attDef

construct attDef = {hasName->uldString}

construct contentDef = set of elemType

% data constructs

construct element = {hasTag->uldString, hasAtts->attSet, hasChildren->content}

conf(domain=*,range=?):elemType

construct attSet = set of attribute

construct attribute = {hasName->uldString, hasVal->cdata}

conf(domain=*,range=?):attDef

construct content = list of node

construct node = element | pcdata

Finally, Example 3 shows the RDF data model with RDF Schema (RDFS) [23, 47] ex-

pressed in the ULD. The description includes constructs for classes, properties, resources,

and triples. A triple in RDF contains a subject, predicate, and object, where a pred-

icate can be an arbitrary resource, including a defined property. In RDFS, rdf:type,

rdfs:subClassOf, and rdfs:subPropertyOf are considered special RDF properties for

denoting instance and specialization relationships. However, we model these properties us-

ing conformance (for rdf:type) and the constructs subClass and subProp. For example,

a subclass relationship is represented by instantiating (using c-inst) a subclass construct

as opposed to using the special rdfs:subClassOf RDF property. This approach allows

RDF properties and structural relationships to be decoupled. That is, in the ULD repre-

sentation, RDF properties only model standard relationships instead of being overloaded

to represent both standard relationships and type, subclass, and subproperty information.

This approach does not limit the expressibility of RDF: partial, optional, and multiple

levels of schema are still possible.

23

Example 3 (The RDF(S) data model)

% schema constructs

construct resource = rdfType | simpleRes

construct rdfType = class | prop

construct simpleRes = {hasURI->uldURI} conf(domain=*,range=*):class

construct class = {hasURI->uldURI, hasLabel->uldString}

conf(domain=*,range=*):class

construct prop = {hasURI->uldURI, hasLabel->uldString, hasDomain->class,

hasRange->rangeVal} conf(domain=*,range=*):rdfType

construct rangeVal = class | uldValueType

construct subClass = {hasSub->class, hasSuper->class}

construct subProp = {hasSub->prop, hasSuper->prop}

% data constructs

construct triple = {hasPred->resource, hasSubj->resource, hasObj->objVal}

construct objVal = resource | literal

construct literal = atomic

Every ULD configuration can be initialized with default constructs that represent

typical primitive value types, such as String, Boolean, Integer, URI, etc., as instances

of atomic-ct. In addition, uldValuetype and uldValue, as shown in Figure 2.6, are

special constructs that work together to provide a mechanism for data models to permit

user-defined primitive types (for example, to support relational domains). (Note that

in Figure 2.6, we shorten uldValue to value and uldValuetype to valuetype.) The

uldValue construct is defined as the union (that is, a union construct) of all defined

atomic-ct constructs. Thus, when a new atomic-ct construct is created, it is added to

uldValue’s definition.4 The uldValuetype construct has an instance with the same name,

represented as a string value, as each construct of uldValue. For example, to add a new

primitive type for date values, we would create a new construct with the identifier date,

assign the construct to uldValue (recall uldValue is a union construct), and create a new

uldValuetype instance ‘date’ (see Figure 2.6).

Sample schema and data (that is, the bottom level of Figure 2.2) for the relational,

XML, and RDF data models are shown in Examples 4, 5, and 6, respectively. Example 4

4We assume that the construct is added by the system managing the ULD configuration, and not by
the user.

24

Meta-Data-Model
(Construct Types)

Data Model
(Constructs)

Data and Schema
(Construct Instances)

c-inst

value

‘date’

ct-inst

valuetype

atomic-ct union-ct

date
conf

ct-inst ct-inst

c-inst

d-inst

c-inst

Figure 2.6: The default uldValue and uldValuetype constructs for representing scalar
types.

gives a subset of the schema and data from Figure 1.1, Example 5 gives a subset of the

schema and data from Figure 1.2, and Example 6 gives a subset of the schema and data

from Figure 1.3. As shown, expressions for defining construct instances take the form:

i = c v d-inst:i1,i2,...,il, where c is a construct, v is a valid value (see below) for

construct c, and i1 to il are construct-instance identifiers for l ≥ 0. The expression defines

i as a c-inst of c with value v. If c participates in a union construct c′, i is considered a

c-inst of both c and c′. Further, i is a d-inst of each construct instance in i1 to il, each

of which must be a c-inst of the construct that c conforms to. The d-inst keyword is

omitted if i does not participate in a d-inst relationship with another construct instance

(that is, l = 0).

As described above, a syntactically well-formed construct instance is allowed in a

configuration only if it satisfies the constraints of its associated construct. We end this

section by giving an informal definition of when a value is valid (with respect to its

associated construct).

Given the construct c, we write c ∈ ct-extent-of (ct) if and only if c is defined as a ct-

inst of construct type ct. Let ct-extent-of (ct) be the set of all instances in a configuration

of construct type ct. Similarly, let c-extent-of (c) be the set of all construct instances in a

configuration that are a c-inst of construct c, and d-extent-of (d) be the set of all construct

instances in a configuration that are a d-inst of d. The expressions i ∈ c-extent-of (c) and

i ∈ d-extent-of (i′) are true if and only if i is defined as a c-inst of construct c and a

25

d-inst of i′. The relation conf (c, c′, x, y) is true if and only if a conformance relationship is

defined from c to c′ (that is, instances of construct c can be a d-inst of c′) with a domain

constraint of x and a range constraint of y. The following constraints are imposed by

constructs on their instances and must hold for a value to be valid. We note that each

construct instance can only be defined once in a configuration, and must have exactly one

associated, non-union construct, that is, it must be a c-inst of exactly one construct that

is not a ct-inst of union-ct.

• Structural Constraints. Let i be a construct instance such that i ∈ c-extent-of (c).

If c is a tuple construct (that is, c ∈ ct-extent-of (struct-ct)), the value of i must

contain the same number of components as c, each component selector of i must be

a distinct selector of c, and each component value of i must be an instance of the

associated component construct value for c. (Note that we require all components to

have a non-null value.) If c is a collection construct (that is, c ∈ ct-extent-of (set-ct)

∪ ct-extent-of (bag-ct) ∪ ct-extent-of (list-ct)), the value of i must be a collection

whose members are instances of the construct that c is a collection of, and if c is a

set, i’s elements must have distinct identifiers. If c is an atomic construct (that is,

c ∈ ct-extent-of (atomic-ct)), we assume that the value of i satisfies c. For example, if

c is a string, i is a well-formed string; if c is an integer, i is a well-formed integer; and

so on. We note that, if c is a union construct (that is, c ∈ ct-extent-of (union-ct)),

c itself does not impose any additional restrictions on i’s value.

• Conformance Constraints. If i is an instance of construct c (that is, i ∈ c-extent-

of (c)), i′ is an instance of construct c′ (that is, i′ ∈ c-extent-of (c′)), and c can

conform to c′ (that is, conf (c, c′, x, y) is true for some x, y), i is allowed to be a d-inst

of i′ (that is, we allow i ∈ d-extent-of (i′)). Further, domain and range cardinality

constraints on conformance restrict the allowable d-inst relationships as follows. If

the domain constraint on the conformance relationship is + (that is, x =+), each i′

in the configuration must participate in at least one d-inst relationship, where there

is at least one i for each i′ such that i ∈ d-extent-of (i′). If the domain constraint on

the conformance relationship is 1, each i′ in the configuration must have exactly one

26

i such that i ∈ d-extent-of (i′). And, if the domain constraint on the conformance

relationship is ?, each i′ in the configuration has at most one i such that i ∈ d-

extent-of (i′). Similarly, if the range constraint on the conformance relationship is +

(that is, y =+), every i in the configuration must be the d-inst of at least one i′, that

is, there must be at least one i′ such that i ∈ d-extent-of (i′). If the range constraint

on the conformance relationship is 1, each i in the configuration must be a d-inst of

exactly one i′. Finally, if the range constraint on the conformance relationship is ?,

each i can be the d-inst of at most one i′.

Example 4 (Sample relational data and schema)

% schema

movie = relation {hasName:’movie’, hasAtts:al1} al1 = attList

[a1,a2,a3,a4,a5] a1 = attribute {hasName:’mid’, domain:’uldInteger’}

a2 = attribute {hasName:’title’, domain:’uldString’} a3 = attribute

{hasName:’runtime’, domain:’uldInteger’} a4 = attribute

{hasName:’genre’, domain:’uldString’} a5 = attribute

{hasName:’company’, domain:’uldString’} key1 = pKey {forRel:movie,

keyAtts:pkal1} pkal1 = pKeyAttList [a1] cast = relation

{hasName:’cast’, atts:al3} al3 = attlist [a6,a7,a8] a6 = attribute

{hasName:’mid’, domain:’uldInteger’} a7 = attribute {hasName:’actor’,

domain:’uldString’} a8 = attribute {hasName:’character’,

domain:’uldString’}

% data

tbl1 = table [t1] d-inst:movie

t1 = tuple [1,’The Usual Suspects’,106,’thriller’,’Gramercy’]

d-inst:movie

tbl2 = table [t2] d-inst:cast

t2 = tuple [1,’Roger Verbal Kint’,’Kevin Spacey’] d-inst:cast

Example 5 (Sample XML with DTD data and schema)

% schema

movie = elemType {hasName:‘movie’, hasAtts:nilad, hasModel:moviecm}

nilad = attDefSet []

moviecm = contentDef [title, studio, genre, actor]

27

title = elemType {hasName:‘title’, hasAtts:nilad, hasModel:nilcm}

nilcm = contentDef []

genre = elemType {hasName:‘genre’, hasAtts:nilad, hasModel:nilcm}

actor = elemType {hasName:‘actor’, hasAtts:actorat, hasModel:nilcm}

actorat = attDefList [role]

role = attdef {name:‘role’}

% data

e1 = element {hasTag:‘movie’, hasAtts:nilas, hasChildren:e1cnt}

d-inst:movie

nilas = attSet []

e1cnt = content [e2,e3,e4]

e2 = element {hasTag:‘title’, hasAtts:nilas, hasChildren:e2cnt}

d-inst:title

e2cnt = content [‘The Usual Suspects’]

e3 = element {hasTag:‘genre’, hasAtts:nilas, hasChildren:e3cnt}

d-inst:genre

e3cnt = content [‘thriller’]

e4 = element {hasTag:‘actor’, hasAtts:e4as, hasChildren=e4cnt}

d-inst:actor

e4as = attSet [a1]

e4cnt = content [‘Kevin Spacey’]

a1 = attribute {hasName:‘role’, hasVal:‘supporting’} d-inst:role

Example 6 (Sample RDF(S) data and schema)

% schema

film = class {hasURI:‘#film’, hasLabel:‘film’}

title = prop {hasURI:‘#title’, hasLabel:‘hasTitle’, hasDomain:film,

hasRange:‘literal’}

thriller = class {hasURI:‘#thriller’, hasLabel:‘thriller’}

filmthril = subclass {hasSub:thriller, hasSuper:film}

% data

f1 = simpleRes {hasURI:‘http://.../review.html’} d-inst:thriller,film

t1 = triple {hasPred:title, hasSubj:f1, hasObj:‘The Usual Suspects’}

2.4 The ULD Query Language

This section describes a query language for the ULD that exploits the capabilities of

Datalog [2] (we describe Datalog in more detail below). A ULD query is expressed as a

28

Datalog program, that is, a set of restricted horn-clause rules, and is executed against

a particular configuration. As an example, the following query finds all available class

names within an RDF configuration. Note that upper-case terms denote variables and

lower-case terms denote constants. Also note that the expression C.hasLabel:X, which

is non-standard Datalog syntax, selects the hasLabel component-value X from the class-

construct instance C. We describe additional extensions to Datalog in Section 4.2.2.

classname(X) ← c-inst(C, class), C.hasLabel:X.

The rule is read as “If C is an RDF class and the label of C is X, then X is a classname.”

As another example, the following query returns the property names of all classes in an

RDF configuration. Note that this query, like the previous one, is expressed solely against

the schema of the source, that is, we are only accessing classes and properties.

hasProp(X, Y) ← c-inst(C, class), c-inst(P, prop), P.hasDomain:C, C.hasLabel:X,

P.hasLabel:Y.

After finding the available RDF classes and their corresponding properties, we can then

use this information to find corresponding data instances. That is, a user could issue

the previous query, see that the source contains title properties, and then construct the

following query to return all title values in the configuration.

filmtitle(X) ← c-inst(P, prop), P.hasLabel:‘title’, c-inst(T, triple), T.hasPred:P,

T.hasObj:X.

With the ULD, it is possible to query data (including accessing data without first

accessing schema), schema (as shown in the previous queries), and data-model constructs.

For example, the following query is expressed directly against data, and returns the URI

of all RDF resources used as a property in at least one triple (note that the resource may

or may not be associated with schema).

dataprop(X) ← c-inst(T, triple), T.hasPred:P, P.hasURI:X.

29

Once this query is executed, we may wish to find additional information about a particular

resource. For example, the following query returns all values of the title resource used as

the property of a triple. (Note that, in RDF, resources are typically represented with a

leading ’#’ symbol.)

propval(X) ← c-inst(T, triple), T.hasPred:P, P.hasURI:‘#title’, T.hasObj:X.

The following queries are similar to the previous examples, but are expressed against

an XML configuration. The first query finds the names of all available element types in the

source, the second finds, for each element-type name, its corresponding attribute-definition

names, the third finds the set of movie titles, the fourth finds all available attribute names

as a data query, and the last query finds the set of attribute values for title attributes

in the configuration. The membership operator ∈ in the second query is used to access

elements within a collection.

elemtype(X) ← c-inst(E, elemType), E.hasName:X.

atttype(X,Y) ← c-inst(E, elemType), E.hasName:X, E.hasAtts:AL, AT∈AL,

AT.hasName:Y.

title(X) ← c-inst(AT, attDef), AT.hasName:‘title’, d-inst(A, AT),

A.hasVal:X.

atts(X) ← c-inst(A, attribute), A.hasName:X.

titleattval(X) ← c-inst(A, attribute), A.hasName:‘title’, A.hasVal:X.

Finally, queries can be posed against data-model constructs directly, for example,

to find the constructs used by an information source. The following query returns all

constructs that serve as struct-ct schema constructs and their component selectors. Note

that the expression SC.P->C is similar to the expression X.P:Y, but applies to constructs

instead of construct instances.

schemastruct(SC, P) ← ct-inst(SC, struct-ct), conf(DC, SC, X, Y), SC.P->C.

Similarly, it is possible to access data values within a configuration, without knowledge of

the data model. For example, the following query returns all primitive values of struct-ct

constructs that serve as data for a corresponding schema item within a configuration.

30

dataval(V) ← ct-inst(DC, struct-ct), conf(DC, SC, X, Y), DC.S->C,

ct-inst(C, atomic-ct), c-inst(D, DC), D.S:V.

The remainder of this section describes, in more detail, the use of Datalog for expressing

queries over ULD configurations. We begin by giving a brief introduction to Datalog

in Section 2.4.1, then describe an approach for interpreting a ULD configuration as a

source for Datalog queries in Section 2.4.2. In Section 2.5 we give a method for defining

configuration constraints, which are expressed as Datalog programs.

2.4.1 Datalog

Datalog is a logic-based language for querying relational databases. A Datalog query (or

program) consists of a finite set of Datalog rules. Each Datalog rule takes the following

form, for n ≥ 1.

R1(u1) ← R2(u2), R3(u3), ..., Rn(un).

This rule is read as “R2(u2) and R3(u3) and ... and Rn(un) implies R1(u1).” In a Datalog

rule, each Ri represents a relation and each ui represents a term of Ri. Often, Ri is

referred to as a predicate applied to terms ui, where the expression Ri(ui) is referred to as

an atomic formula (or just formula) and ui consists of a list of terms ui = ui1, ui2, ..., uim

for m ≥ 1. We use the standard convention where predicates and constants begin with

lower-case letters (or possibly special characters) and variables begin with upper-case

letters. Datalog rules are range restricted, that is, each variable appearing in u1 must

appear in u2, ..., un. The head of the rule occurs on the left side of the arrow and always

contains a single formula R1(u1). The body of the rule consists of the set of conjoined

formulas R2(u2), ..., Rn(un).

A Datalog program contains finite sets of extensional and intensional relations, whose

instances (that is, sets of associated facts) are called the extensional database (EDB) and

intensional database (IDB), respectively. An extensional relation is a relation that exists

in the underlying database and can only occur in the body of a rule. Thus, an extensional

formula Ri(ui) corresponds to the relation in the underlying database with the name Ri,

31

and ui represents a tuple (as a list of terms) with the same arity as the corresponding

database relation. An intensional relation is a relation occurring in the head of some rule.

The result of a executing a Datalog program is an IDB.

Equality and inequality predicates (=, $=, <, >, and so on) are treated as special

relations in Datalog. However, the introduction of equality further constrains the range-

restriction requirement. Namely, in every equality expression containing two variables, at

least one variable must occur as a variable in a relational atom Ri(ui) in the body of the

rule. For an inequality, both variables must occur in a relational atom in the body of the

rule. We note that equality and inequality relations are typically represented using infix

notation, that is, x = y instead of =(x, y). Similar to equality and inequality relations,

Datalog can also be extended to support functions [80]. The ULD query language uses

functions and relations to access configurations, which we describe further in Section 2.4.2.

In the minimal model semantics, the answer to a Datalog program P over input I

(where I represents the given instances, or tuples, of the extensional relations) is defined

as the minimal model of P containing I. Alternatively, the least fixpoint semantics states

that an answer to P is the least fixpoint of P , which is computed by repeatedly applying

the rules of P on input I. Every Datalog program, as defined above, has a least fixpoint,

which is also the minimal model.

As defined, only positive (that is, non-negated) formulas are permitted in a Datalog

rule. Datalog¬ extends Datalog by allowing negative formulas in the body of rules.5

Similar to Datalog, every variable in the head of a range-restricted Datalog¬ rule appears

in some positive relation occurrence in the body. In addition, every variable in a negated

formula of a Datalog¬ rule must occur in a positive formula in the body of the rule. We

note that not all Datalog¬ programs have a unique least fixpoint.

A restricted form of Datalog¬ considers only stratified programs, which place a syn-

tactic restriction on rules. (The ULD query language assumes queries are expressed as

stratified Datalog¬ programs.) Namely, a stratified program can be partitioned into a

finite number of sets (or layers) of rules P 1, P 2, ..., Pn such that (1) for each IDB relation

5Note that Datalog¬ uses the closed-world assumption, where facts that are not explicitly stated as
true or that cannot be inferred are assumed to be false.

32

R, all rules in P defining R are in the same partition, (2) if R(u) ← ...R′(v)... is a rule in

P , R′ is an IDB relation, R′ is in partition P i, and R is in partition P j , then i ≤ j, and

(3) if R(u) ← ...¬R′(v)... is a rule in P , R′ is an IDB relation, R′ is in partition P i, and

R is in partition P j , then i < j. Stratification gives a natural order for executing rules,

namely, the fixpoint of partition P 1 is computed first, followed by the fixpoint of partition

P 2, and so on, where partition Pn is computed last. A program that can be expressed

using stratified Datalog¬ is guaranteed to have a unique least fixpoint. However, not all

Datalog¬ programs can be stratified.

Finally, we note that it is possible to construct an unsatisfiable query in Datalog¬,

that is, regardless of the EDB, the query always has an empty result. For example, the

rule p(X) ← q(X),¬q(X) will never return an X that makes p(X) true.

2.4.2 Querying ULD Configurations using Datalog

As mentioned in the beginning of this section, a ULD query is expressed using Datalog, and

more precisely, using stratified Datalog¬. Thus, we treat a configuration F as a database

instance consisting of a fixed set of extensional relations. To describe a configuration

as an EDB, we represent a configuration F as a tuple (ICT , IC , ID,V, val, ct-extent-of,

c-extent-of, d-extent-of, conf) as follows.

• ICT , IC , and ID are sets that consist, respectively, of construct-type identifiers,

construct identifiers, and construct-instance identifiers. We require ICT , IC , and ID
to be pairwise disjoint sets.

• V is the set of values of construct and data identifiers.

• val : IC ∪ ID → V maps each construct and data identifier to a value.

• ct-extent-of : ICT → P(IC) maps construct-type identifiers to their associated construct-

instance identifiers, where P(IC) denotes the powerset (set of subsets) of IC .

• c-extent-of : IC → P(ID) maps construct identifiers to their associated construct-

instance identifiers.

33

• d-extent-of : ID → P(ID) maps construct-instance identifiers to their associated

construct-instance identifiers.

• conf : IC×IC×{∗,+, ?, 1}×{∗,+, ?, 1} → Boolean is the conformance relation, such

that given an input <c, c′, x, y> for c, c′ ∈ IC , conf returns true if c can conform to

c′ with domain constraint x and range constraint y.

The values V of F are represented as follows.

• The tuple <(s1, c1), (s2, c2), ..., (sn, cn)> is in V for every construct identifier c ∈ ct-

extent-of (struct-ct) such that n is the number of components of c, si is the selector

of the i-th component of c, and ci is the construct identifier of the i-th component

of c, for 1 ≤ i ≤ n.

• The tuple <(s1, v1), (s2, v2), ..., (sn, vn)> is in V for every construct-instance identi-

fier d ∈ ID such that there is a c ∈ ct-extent-of (struct-ct) where d ∈ c-extent-of (c),

and n is the number of components of d, si is the selector of the i-th component of

d, and vi is the value of the i-th component of d, for 1 ≤ i ≤ n.

• The singleton c′ is in V for every construct identifier c ∈ ct-extent-of (set-ct) ∪ ct-

extent-of (list-ct) ∪ ct-extent-of (bag-ct) such that c is defined as a collection of c′.

• The set {c1, c2, ..., cn} is in V for every union construct identifier u ∈ ct-extent-

of (union-ct) such that u is defined as a union of construct identifiers c1, c2, ...,

cn.

• The set {v1, v2, ..., vn} is in V for every construct-instance identifier v ∈ c-extent-of (c)

such that c ∈ ct-extent-of (set-ct) and v is defined as the set of construct-instance

identifiers v1, v2, ..., vn.

• The bag [v1, v2, ..., vn] is in V for every construct-instance identifier v ∈ c-extent-of (c)

such that c ∈ ct-extent-of (bag-ct) and v is defined as the bag of construct-instance

identifiers v1, v2, ..., vn.

34

• The tuple <v1, v2, ..., vn> is in V for every construct-instance identifier v ∈ c-extent-

of (c) such that c ∈ ct-extent-of (list-ct) and v is defined as a list of construct-instance

identifiers where v1 is at index 1, v2 is at index 2, ..., and vn is at index n.

• The singleton v is in V for every construct-instance identifier v ∈ c-extent-of (c)

such that c ∈ ct-extent-of (atomic-ct). Note that we assume an atomic value and its

associated identifier are equivalent (in this case, v).

We assume that standard functions and relations are defined for the types of V. That

is, v.s returns the corresponding construct or construct-instance identifier given a tuple v

and a selector s (where s is a selector for v). The membership relation ∈ is defined for

sets, lists, and bags. The length-function |v| takes a collection v and returns the number

of elements of v. The function v[i] returns the item at the ith position of v, where v is

a list and i is a positive integer between 1 and |v|. And the function x ∈∈ v returns the

cardinality of x in v.

Finally, for a configuration F , the interpretation IF consists of a non-empty set ∆I (the

domain of the interpretation) and maps formulas in the query language to expressions in

the configuration F . We call IF the database instance mapping of configuration F . Note

that we use the standard Datalog semantics, thus, we only describe the interpretation

of atomic formulas for the purpose of determining truth assignments, and not arbitrary

Datalog expressions. For example, the standard interpretation (for Datalog) of a relational

database maps each constant to a constant in the domain of the database, and each

formula R(x1, ..., xn) for constants x1, ..., xn to the corresponding tuple < x1, ..., xn > of

the relation instance R [73]. Given an interpretation IF for the configuration F , we define

the domain of the interpretation ∆I as follows. (Note that atomic values are given in ID.

Also, the second line adds component-selector definitions used in constructs, whereas the

third line adds component selectors used in construct instances.)

∆I = ICT ∪ IC ∪ ID ∪
{s | ∃c (c ∈ ct-extent-of (struct-ct) ∧ val(c) = <..., (s, c′), ...>)} ∪
{s | ∃d ∃c (d ∈ c-extent-of (c) ∧ val(d) = <..., (s, c′), ...>)} ∪
{n | ∃d ∃c (d ∈ c-extent-of (c) ∧ c ∈ ct-extent-of (set-ct) ∧ |val(d)| = n)} ∪
{n | ∃d ∃c (d ∈ c-extent-of (c) ∧ c ∈ ct-extent-of (list-ct) ∧ |val(d)| = n)} ∪

35

{n | ∃d ∃c (d ∈ c-extent-of (c) ∧ c ∈ ct-extent-of (bag-ct) ∧ |val(d)| = n)} ∪
{i | ∃d ∃c (d ∈ c-extent-of (c) ∧ c ∈ ct-extent-of (list-ct) ∧ 1 ≤ i ≤ |val(d)|)} ∪
{i | ∃d ∃c (d ∈ c-extent-of (c) ∧ c ∈ ct-extent-of (bag-ct) ∧ 1 ≤ i ≤ |val(d)|)}

The interpretation IF is given in Figure 2.7 (for an arbitrary F). Each expression

gives a mapping such that the expression on the left side of the equality sign is true if and

only if the expression on the right side of the equality sign is true.

ct-inst(x, y)I ≡ x ∈ ct-extent-of (y)
c-inst(x, y)I ≡ x ∈ c-extent-of (y)
d-inst(x, y)I ≡ x ∈ d-extent-of (y)

conf(x, y, d, r)I ≡ conf(x, y, d, r)
(x.s->y)I ≡ x ∈ ct-extent-of (struct-ct) ∧ val(x).s = y

(x.s:y)I ≡ ∃(c) x ∈ c-extent-of (c) ∧ c ∈ ct-extent-of (struct-ct) ∧ val(x).s = y
(y ∈ x)I ≡ ∃(c) x ∈ c-extent-of (c) ∧ [c ∈ ct-extent-of (set-ct) ∨

c ∈ ct-extent-of (list-ct) ∨ c ∈ ct-extent-of (bag-ct)] ∧ y ∈ val(x)
(x[i] = y)I ≡ ∃(c) x ∈ c-extent-of (c) ∧ c ∈ ct-extent-of (list-ct) ∧ val(x)[i] = y
(|x| = n)I ≡ ∃(c) x ∈ c-extent-of (c) ∧ [c ∈ ct-extent-of (set-ct) ∨

c ∈ ct-extent-of (list-ct) ∨ c ∈ ct-extent-of (bag-ct)] ∧ |val(x)| = n
(y ∈∈ x = n)I ≡ ∃(c) x ∈ c-extent-of (c) ∧ c ∈ ct-extent-of (list-ct) ∧ y ∈∈ val(x) = n

setof(x, y)I ≡ x ∈ ct-extent-of (set-ct) ∧ val(x) = y
bagof(x, y)I ≡ x ∈ ct-extent-of (bag-ct) ∧ val(x) = y
listof(x, y)I ≡ x ∈ ct-extent-of (list-ct) ∧ val(x) = y

unionof(x, y)I ≡ x ∈ ct-extent-of (union-ct) ∧ y ∈ val(x)

Figure 2.7: The interpretation of ULD configurations.

2.5 The ULD Constraint Language

The ability to query the ULD is important for providing uniform access to information

sources. The ULD query language can also be used to specify additional constraints on

configurations. In this section, we describe a special syntax for expressing constraints

based on the ULD query language. Our goal is to define a language that can be used

to describe common ULD constraints, while exploiting the expressive power of Datalog.

Therefore, we have chosen a syntax for expressing ULD constraints that can be directly

converted to stratified Datalog¬ programs. We also show how such constraints can be used

to further refine data models, and in particular, to express conformance constraints beyond

simple cardinality restrictions. In general, further refining a data model by providing

additional constraints using the language presented here is optional. However, we require

36

domain and range cardinality restrictions on conformance, for example, so that additional

tools can determine whether schema is required or optional.

Constraints against the ULD are represented as stratified Datalog¬ programs with

a specific set of formulas. The result of executing the program against a configuration

is used to determine whether the constraint is satisfied. To make constraints easier to

specify, we introduce the following syntax for defining ULD constraints, where the name

of the constraint is represented as t, n ≥ 1, and m ≥ 0.

constraint t:

e1, e2, ..., en ⇐ bc.

r1 ← b1.

r2 ← b2.
...

rm← bm.

A constraint expressed with this syntax can be directly converted to a corresponding

stratified Datalog¬ program, which we show below. Due to the underlying conversion,

we require that t-body and t-sat (which are introduced by the conversion) are not used

as predicate names in r1 to rm below, where t is replaced by the name of the constraint.

All ULD constraints consist of exactly one rule called the constraint assertion, plus an

optional set of rules forming a stratified Datalog¬ program, called the constraint pro-

gram. The constraint assertion is shown as the first rule above and the remaining rules

define the constraint program. As shown, constraint-assertion rules are distinguished from

constraint-program rules by the⇐ implication symbol. The head of a constraint assertion

has one or more extensional relations e1 to en, and a standard stratified Datalog¬ rule

body bc containing formulas with either extensional relations or intensional relations taken

from r1 to rm. Unlike Datalog, the head of a constraint assertion can contain multiple

formulas, positive formulas with variables not mentioned in the body of the rule, and

negative formulas. We require all variables occurring in a negative formula in the head of

an assertion to occur in a positive formula in the assertion (either the head or the body).

A constraint assertion serves to define the purpose of the constraint, and the constraint

37

program serves to define temporary, intensional relations used by the constraint assertion.

The meaning of a constraint assertion is defined as follows. Let v be a function that

maps a set of variable names to variable assignments (that is, values) and let var be a

function that takes one or more formulas and returns the corresponding set of variables.

The constraint program is executed first. The body bc of the constraint assertion is then

evaluated against both the configuration facts and the resulting IDB, generated from

executing the constraint program. Each evaluation of bc results in a variable assignment

vb that makes bc true with respect to the configuration and the IDB. Given a formula e, we

write e/v to denote a new formula with every variable in e replaced by its corresponding

value in the variable assignment v. Similarly, for variable assignments v1 and v2, e/v1/v2

denotes the formula with every variable in e/v1 replaced by its corresponding value in the

variable assignment v2, and so on. Given a configuration F with corresponding database

instance mapping IF and constraint t, we use the standard notation IF |= t whenever IF

satisfies constraint t. For a configuration instance IF and constraint t, IF |= t if and only

if, for each variable assignment vb of bc, the following conditions are true.

1. If ei in e1, e2, ..., en is a positive formula with every variable in var(ei) occurring in

var(bc) (that is, var(ei) ⊆ var(bc)), then ei/vb ∈ IF .

2. If ei in e1, e2, ..., en is a negative formula of the form ¬fi with every variable in

var(fi) occurring in var(bc) (that is, var(fi) ⊆ var(bc)), then fi/vb /∈ IF .

3. If E is the largest subset of formulas e1 to en such that every ej ∈ E has at least

one variable in var(ej) not occurring in var(bc) (that is, ∃V (V ∈ var(ej) ∧ V

/∈ var(bc))), then there must exist at least one variable assignment ve for E that

makes each formula in E true for the configuration. That is, for E = {ej1, ej2, ..., ejk}

and var(E)− var(bc) = {V1,V2, ...,Vl}, the set E represents the first-order logic ex-

pression ∃V1 ∃V2 ... ∃Vl (ej1/vb, ej2/vb, ..., ejk/vb). A variable assignment ve makes

E true with respect to the configuration if and only if for every formula ej ∈ E,

ej/vb/ve ∈ IF . (Note that according to the definition of the ULD constraint syntax,

E can only contain positive formulas.)

38

The ULD constraint language is meant to simplify the task of expressing constraints

against ULD configurations. Every well-formed ULD constraint can be rewritten as a

stratified Datalog¬ program as follows, where t is the name of the constraint and both

t-body and t-sat are intensional relations, introduced as part of the re-writing process.

t-sat(var(bc)) ← t-body(var(bc)), e1, e2, ..., en.
t-body(var(bc)) ← bc.
r1 ← b1.
r2 ← b2.
...
rm ← bm.

Note that we use the syntax p(var(bc)) to denote a formula p(V1, V2, ...) where var(bc) =

{V1, V2, ...}. If var(bc) is empty (that is, there are no variables in the body of the constraint

assertion), we substitute var(bc) with an arbitrary constant symbol (for example, we could

choose a constant from one of the formulas of bc). The use of a constant symbol is needed

because Datalog requires at least one attribute in every relation.

With this Datalog¬ representation of a ULD constraint, it is straightforward to check

whether the constraint is satisfied by a configuration (note that we assume configurations

are constrained to be finite). Namely, IF |= t if and only if for each fact in the evaluation of

the formula t-sat there is a corresponding fact in the evaluation of t-body. That is, for each

tuple of t-sat there is an identical tuple in t-body and vice versa. For example, consider

the following constraint (Example 7), which states that, within an RDF configuration, no

two classes may have the same label.

Example 7 (RDF class-label constraint)

constraint key1:

C1=C2 ⇐ c-inst(C1, class), c-inst(C2, class), C1.hasLabel:L, C2.hasLabel:L.

The RDF class-label constraint can be directly re-written into the following Datalog rules.

t-sat(C1, C2, L) ← t-body(C1, C2, L), C1=C2.

t-body(C1, C2, L)← c-inst(C1, class), c-inst(C2, class), C1.hasLabel:L, C2.hasLabel:L.

39

Assume a configuration that contains two distinct data identifiers, say d1 and d2, that are

both classes with the same label l. Thus, the formula t-body(d1,d2,l) is true. However,

there is not an equivalent t-sat formula: t-sat(d1,d2,l) is false because d1 does not equal

d2 (the C1=C2 expression is false).

We show below that the two representations for constraints are equivalent, that is, con-

straints expressed in the abbreviated syntax and the evaluation of the stratified Datalog¬

programs they generate. We start by showing that the generated stratified Datalog¬

syntax is well-formed.

Theorem 1 (Well-formed Datalog-program generation) Given a valid ULD con-
straint t, the Datalog program D generated from the constraint is a well-formed stratified
Datalog¬ program.

Proof (Well-formed Datalog-program generation). To show that D can be strati-

fied, notice that t’s constraint program is by definition a valid stratified Datalog¬ program

(because t-body and t-sat are not allowed as intensional predicate names for the IDB for-

mulas r1 to rm). Assume P1, P2, ..., Pi are used to partition the rules from t’s constraint

program, where i is the number of needed partitions. The rule for t-body is placed in

partition Pi+1, because bc may contain negative IDB (constraint program) formulas. The

rule for t-sat is also placed in Pi+1 because it contains a positive (not a negative) t-body

formula. While t-sat can contain negative formulas, they are restricted to extensional

formulas only.

Finally, t-sat and t-body rules are valid Datalog¬ rules as follows. By definition, bc

must be a valid Datalog¬ rule body. If var(bc) is empty, t-body is still well-formed because

a constant term is added to the formula. For non-empty var(bc), every variable in the head

of the t-sat rule also occurs in the body of the rule. The head of a constraint assertion

may only contain a negative formula if each variable in the formula occurs in a positive

formula in the head or body of the rule. Note that all variables that occur in the head

of the assertion occur in the body of the t-sat rule. Therefore, the t-sat rule satisfies the

Datalog¬ restriction concerning negative formulas: For a given negative formula ei in an

40

assertion, each variable of ei either occurs in a positive formula ej in the body of t-sat, or

in the positive t-body formula in the body of t-sat. QED

Finally, we show that the two representations for constraints are semantically equiv-

alent. That is, if t′ is the constraint defined by the stratified Datalog¬ program D and

t is a valid ULD constraint, we say that t and D are semantically equivalent if for any

configuration F with corresponding database instance mapping IF , IF |= t if and only if

IF |= t′.

Theorem 2 (Semantic equivalence of Datalog-program generation) Given any
valid ULD constraint t and Datalog program D generated from t, D and t are seman-
tically equivalent.

Proof (Semantic equivalence of Datalog-program generation). Assume that F is

a given configuration with database instance mapping IF . A variable assignment vb makes

bc true if and only if vb makes t-body true. For a given variable assignment vb that makes

bc true, t-sat is true for vb if and only if the expression e1, e2, ..., en is true. It follows

that IF |= t′, where t′ represents the constraint imposed by D, if only if for every vb that

makes bc true, t-sat is also true. (Note that by definition of the rewriting, t′ and t have

the same bc and e1 to en.) Thus, IF |= t′ if and only if each ei/vb is true for 1 ≤ i ≤ n,

which is exactly equivalent to the conditions given by the ULD constraint definition for

determining whether IF |= t is true. That is, ei/vb is true for 1 ≤ i ≤ n if and only if the

three conditions given by the ULD constraint definition hold. QED

The rest of this section gives examples of the ULD constraint language. The following

constraint (Example 8) uses the subclassClosure (intensional) relation to ensure all RDF

objects are instances of their corresponding classes (which may not be explicitly repre-

sented in an RDF source, but is usually inferred by an RDF processor). Note that the

subclassClosure relation computes the transitive closure of the RDF subclass relationship.

41

Example 8 (RDF(S) subclass instance constraint)

constraint obj1:

d-inst(R, C2) ⇐ c-inst(R, resource), d-inst(R, C1), subclassClosure(C1, C2).

subclassClosure(C1, C2) ← C1=C2.
subclassClosure(C1, C3) ← c-inst(S, subclass), S.hasSub:C1,

S.hasSuper:C2, subclassClosure(C2, C3).

In general, constraints express information concerning configurations that are not di-

rectly expressible using the available structures of the ULD. Constraints can be used for

a number of purposes such as validating that configurations (or the result of updating

configurations) are correct, optimizing queries [2, 67], and transformation [68].

An important use of constraints for the ULD is to further define conformance relation-

ships. To illustrate, Example 9 describes some of the restrictions imposed by conformance

relationships in the relational model of Example 1. Note that in the relational model

definition of Example 1, the conformance relationships only require tables and tuples to

conform to relation types (through cardinality constraints) but they do not describe the

structural implications of the conformance relationships. The constraints of Example 9

capture some of these structural requirements.

Example 9 (Relational conformance constraints)

constraint rel-conf1:

d-inst(T, R) ⇐ c-inst(B, table), c-inst(R, relation), d-inst(B, R), T ∈ B.
constraint rel-conf2:

d-inst(V, D) ⇐ c-inst(T, tuple), c-inst(R, relation), d-inst(T, R), R.hasAtts:AL,
AL[I]=A, A.hasDomain:D, T[I]=V.

constraint rel-conf3:

|T|=N ⇐ c-inst(T, tuple), c-inst(R, relation), d-inst(T, R), R.hasAtts:AL, |AL|=N.

The first constraint (rel-conf1) states that, for a table to conform to a relation, each tuple

in the table must be a d-inst of the relation type. The second and third constraints define

the conformance relationship between tuples and relations. The second constraint (rel-

conf2) requires the i-th value in the tuple to be a d-inst of the domain of the relation’s

42

i-th attribute. The last constraint (rel-conf3) states that a tuple must have the same

number of values as the number of attributes in the relation type.

Example 10 defines a conformance constraint for the RDF(S) data model of Example 3.

Note that RDF(S) places few restrictions on conformance, for example, objects are not

required to have any properties of their corresponding classes (that is, properties are

optional). The constraint below, however, states that, if a triple’s predicate is a defined

property, the triple’s subject must be a d-inst of the property’s domain class, and the

triple’s object must be a d-inst of the property’s range class. Note that this is an implicit

conformance constraint, because there is not an explicit conformance definition between

triples and properties.

Example 10 (RDF(S) conformance constraint)

constraint rdf-conf1:

d-inst(Rs, Cs), d-inst(Ro, Co) ⇐
c-inst(T, triple), c-inst(P, property), T.hasPred:P, T.hasSubj=Rs,
P.hasDomain=Cs, T.hasObj:Ro, P.hasRange:Co.

Not all constraints can be expressed using the ULD constraint language described in

this section. For example, it is not possible to derive a disjunction, in which the intent

of the constraint is to ensure that either e1 or e2 must hold. It is also not possible to

express constraints that cannot be stratified. The ULD constraint language is slightly more

expressive than stratified Datalog¬ programs, because it permits existentially quantified

and negative formulas in the head of an assertion. We show in Chapter 3 that the ULD

constraint language is expressive enough to capture a wide range of data-model constraints.

2.6 A Partial ULD Axiomatization

The ULD provides uniform access to data model, schema, and data information. This

flexibility allows generic restrictions to be placed on configurations using the ULD con-

straint language defined in the previous section. In other words, it is possible to define

43

general constraints (applicable to any data model) that must be satisfied by all valid con-

figurations using the ULD constraint language. This section exploits this observation to

further formalize the ULD framework. In particular, we provide an axiomatization for the

ULD using the ULD constraint language. By axiomatization, we mean a set of statements

(axioms) that must be true for all configurations. If an axiom is false for a configuration,

the configuration is not considered valid. That is, the configuration is not a model of the

axioms. Note that the axiomatization is independent of the syntax used to represent a

configuration, and we assume that all configurations are syntactically valid. The axioma-

tization we present in this section is partial, and attempts to characterize the description

of the ULD given previously in Sections 2.1, 2.2, and 2.3. There are true statements that

can be made of valid configurations that are not included in the axiomatization. First,

not all true statements can be expressed using the ULD constraint language. Examples

include axioms for equality, collection arithmetic (such as asserting that the length of a

collection is always the same as the the number of elements in the collection), and some

closure axioms that require disjunction in the head of a rule. Second, we do not include

all “trivial” axioms (mainly for conciseness), for example, that a domain constraint can

only contain a value in the set {1,+,?,*}.

We divide the axiomatization into two parts. First, we give a core set of axioms that

are true regardless of the meta-data-model chosen. And second, we give the specific ax-

ioms for the ULD meta-data-model (with tuple, collection, union, and atomic structures).

Although we do not consider alternative meta-data-models, it is possible to define differ-

ent structures and constraints by choosing different axioms than those given for the ULD

meta-data-model.6

When defining axioms, we use the conventions for variable names as shown in Fig-

ure 2.8. That is, we use variables S and T for construct types, P and Q for constructs,

and X and Y for construct instances. When appropriate, we use the convention that P is

a ct-inst of S, Q is a ct-inst of T, P can conform to Q, X is a c-inst of P, Y is a c-inst of

Q, and X is a d-inst of Y. We also use the term axiom instead of constraint to define the

6In addition to defining an alternative meta-data-model, the syntax used to specify configurations would
also need to be altered along with the mapping from the syntax to the corresponding database instance.

44

(Construct Instances)
Data and Schema

(Constructs)
Data Model

(Construct Types)
Meta-Data-Model

XY

PQ

ST

ct-inst ct-inst

conf
c-inst c-inst

d-inst

Figure 2.8: The naming conventions used in specifying ULD axioms.

rules in the theory. Semantically, constraints and axioms are identical, however, we use

constraint to represent restrictions placed on specific data models and axiom to represent

restrictions placed over all configurations regardless of the data model.

2.6.1 Definition of the Core ULD Theory

The set of axioms shown in Figure 2.9 and 2.10 are independent of any particular ULD

meta-data-model. The axioms define the core theory of the ULD, which performs three

primary functions: (1) it describes the dependency among construct types, constructs, and

construct instances, (2) it partitions construct types, constructs, and construct instances

into distinct sets, and (3) it articulates the relationship between conformance specifications

(conf facts) and data instance-of relationships (d-inst facts). Note that we use the symbol

* to distinguish axioms that follow directly from the interpretation given in Section 2.4.2.

The first three axioms of Figure 2.9 describe the dependencies between construct types,

constructs, and construct instances. The first axiom requires every construct identifier

used in a configuration to be a ct-inst of some construct type. Recall that the ⇐ symbol

denotes a constraint assertion in which existential variables are permitted in the head

of the rule. Thus, the formula ct-inst(P, S) requires at least one S for each P in the

configuration, where the equivalent first-order logic expression is: ∀X ∀P (c-inst(X, P) ⇒

∃S ct-inst(P, S)). The second axiom requires the participating identifiers of every d-inst

relationship to have constructs that occur together in a conformance definition. The third

axiom requires conformance definitions to relate constructs (as opposed to construct types

45

axiom 1: (Constructs always have construct types.)
ct-inst(P, S) ⇐ c-inst(X, P).

axiom 2: (Data instances always have conforming constructs.)
c-inst(X, P), c-inst(Y, Q), conf(P, Q, D, R) ⇐ d-inst(X, Y).

axiom 3∗: (Conformance is defined between constructs.)
ct-inst(P, S), ct-inst(Q, T) ⇐ conf(P, Q, D, R).

axiom 4∗: (Construct and construct types are disjoint.)
S$=Q ⇐ ct-inst(P, S), ct-inst(Q, T).

axiom 5∗: (Constructs and construct instances are disjoint.)
P$=Y ⇐ ct-inst(P, S), c-inst(Y, Q).

axiom 6∗: (Construct types and construct instances are disjoint.)
S$=Y ⇐ ct-inst(P, S), c-inst(Y, Q).

axiom 7: (Domain and Range constraints are unique among conforming constructs)
D1=D2, R1=R2 ⇐ conf(P, Q, D1, R1), conf(P, Q, D2, R2).

Figure 2.9: The core ULD axioms for describing basic structure restrictions.

or construct instances).

Axioms 4 through 6 give pairwise restrictions on ULD meta-data-model identifiers.

Axiom 4 requires the set of construct types and constructs to be disjoint. Axiom 5 requires

the set of constructs and construct instances to be disjoint. And Axiom 6 requires the set

of construct types and construct instances to be disjoint.

Axiom 7 requires unique conformance definitions, that is, if P can conform to Q,

there is only one such definition for P and Q in a configuration. Note that conformance

is not a symmetric relationship. However, it is possible to define separate conformance

relationships such that P can conform to Q and Q can conform to P (but asserting P

conforms to Q does not imply Q conforms to P).

The remaining axioms of the core theory are shown in Figure 2.10 and define the

domain and range cardinality restrictions on conformance. Recall that a conformance def-

inition takes the form conf (P, Q, D, R), which states that an instance X of P can conform

to an instance Y of Q (that is, there can be a d-inst(X, Y) fact in the configuration). In

46

axiom 8: (Range constraint requiring at least one conformee.)
c-inst(Y, Q), d-inst(X, Y) ⇐ conf(P, Q, D, 1), c-inst(X, P).

axiom 9: (Domain constraint requiring at least one conformer.)
c-inst(X, P), d-inst(X, Y) ⇐ conf(P, Q, 1, D), c-inst(Y, Q).

axiom 10: (Range constraint requiring at least one conformee.)
c-inst(Y, Q), d-inst(X, Y) ⇐ conf(P, Q, D, +), c-inst(X, P).

axiom 11: (Domain constraint requiring at least one conformer.)
c-inst(X, P), d-inst(X, Y) ⇐ conf(P, Q, +, D), c-inst(Y, Q).

axiom 12: (Range constraint requiring at most one conformee.)
Y1=Y2 ⇐ conf(P, Q, D, 1), c-inst(X, P), c-inst(Y1, Q), c-inst(Y2, Q), d-inst(X, Y1),

d-inst(X, Y2).

axiom 13: (Domain constraint requiring at most one conformer.)
X1=X2 ⇐ conf(P, Q, 1, R), c-inst(Y, Q), c-inst(X1, P), c-inst(X2, P), d-inst(X1, Y),

d-inst(X2, Y).

axiom 14: (Range constraint requiring at most one conformee.)
Y1=Y2 ⇐ conf(P, Q, D, ?), c-inst(X, P), c-inst(Y1, Q), c-inst(Y2, Q), d-inst(X, Y1),

d-inst(X, Y2).

axiom 15: (Domain constraint requiring at most one conformer.)
X1=X2 ⇐ conf(P, Q, ?, R), c-inst(Y, Q), c-inst(X1, P), c-inst(X2, P), d-inst(X1, Y),

d-inst(X2, Y).

Figure 2.10: The core ULD axioms describing conformance cardinality restrictions.

addition, D represents a constraint on the domain (that is, the P side) of the relationship,

and R represents a constraint on the range (that is, the Q side) of the relationship. For

example, if the range cardinality restriction is 1, every instance X of P must conform to

some instance Y of Q (that is, ∀X ∃Y (d-inst(X, Y))). Similarly, if the domain cardinality

restriction is 1, there must exist an instance X of P for every instance Y of Q such that X

conforms to Y (that is, ∀Y ∃X (d-inst(X, Y))).

We note that the core theory is less restrictive structurally than the ULD meta-data-

model. In particular, the core theory permits a construct to be an instance of multiple

construct types and to conform to multiple constructs.

47

axiom 16∗: (Struct construct-type introduction.)
S=struct-ct ⇐ ct-inst(P, S), ¬ S=set-ct, ¬ S=bag-ct, ¬ S=list-ct, ¬ S=atomic-ct.

axiom 17∗: (Set construct-type introduction.)
S=set-ct ⇐ ct-inst(P, S), ¬ S=struct-ct, ¬ S=bag-ct, ¬ S=list-ct, ¬ S=atomic-ct.

axiom 18∗: (Bag construct-type introduction.)
S=bag-ct ⇐ ct-inst(P, S), ¬ S=struct-ct, ¬ S=set-ct, ¬ S=list-ct, ¬ S=atomic-ct.

axiom 19∗: (List construct-type introduction.)
S=list-ct ⇐ ct-inst(P, S), ¬ S=struct-ct, ¬ S=set-ct, ¬ S=bag-ct, ¬ S=atomic-ct.

axiom 20∗: (Atomic construct-type introduction.)
S=atomic-ct ⇐ ct-inst(P, S), ¬ S=struct-ct, ¬ S=set-ct, ¬ S=bag-ct, ¬ S=list-ct.

axiom 21: (A construct is an instance of at most one construct type.)
S1=S2 ⇐ ct-inst(P, S1), ct-inst(P, S2).

axiom 22: (A construct conforms to at most one construct.)
Q1=Q2 ⇐ conf(P, Q1, D1, R1), conf(P, Q2, D2, R2).

Figure 2.11: The ULD meta-data-model axioms that define the allowable construct types
and two structural restrictions.

2.6.2 Definition of the ULD Meta-Data-Model Theory

The ULD meta-data-model axioms are given in Figures 2.11–2.17. The meta-data-model

axioms extend the core theory by defining the allowable construct types and the corre-

sponding representations for basic structures.

The first five axioms (16–22) of Figure 2.11 restrict the set of construct-type constants

to struct-ct, set-ct, bag-ct, list-ct, and atomic-ct. Thus, any configuration that uses a

different construct type than those defined is not considered valid. Taken together, Axioms

16—20 are equivalent to the first-order logic expression ∀P ∀S (ct-inst(P, S)⇒ S=struct-ct

∨ S=set-ct ∨ S=bag-ct ∨ S=list-ct ∨ S=atomic-ct ∨ S=union-ct), however, disjunction

constraints are not allowed directly. The last two axioms (20 and 21) define structural

restrictions on configurations. In particular, Axiom 20 restricts a construct from being a

ct-inst of more than one construct type, and Axiom 22 refines Axiom 7 of the core theory

by restricting a construct to conform to at most one other construct.

Figure 2.12 defines axioms for tuple structures (that is, struct-ct basic structures). The

48

axiom 23∗: (Component definitions exist only for struct constructs.)
ct-inst(P, struct-ct), ct-inst(Q, T) ⇐ P.Sel->Q.

axiom 24∗: (Component expressions exist only for struct construct instances.)
c-inst(X, P), ct-inst(P, struct-ct), c-inst(Y, Q) ⇐ X.Sel:Y.

axiom 25: (Every struct construct has at least one component definition.)
P.Sel->Q ⇐ ct-inst(P, struct-ct).

axiom 26: (Struct instances always have a component definition for each component.)
X.Sel:Y, c-inst(Y, Q) ⇐ ct-inst(P, struct-ct), P.Sel->Q, c-inst(X,P).

axiom 27: (Struct instances always have components for component definitions.)
P.Sel->Q, c-inst(Y, Q) ⇐ ct-inst(P, struct-ct), c-inst(X, P), X.Sel:Y.

axiom 28: (Struct constructs have unique selectors.)
Q1=Q2 ⇐ ct-inst(P, struct-ct), P.Sel->Q1, P.Sel->Q2.

axiom 29: (Struct instances have unique selectors.)
Y1=Y2 ⇐ ct-inst(P, struct-ct), c-inst(X, P), P.Sel:Y1, P.Sel:Y2.

Figure 2.12: The axioms for tuple structures in the ULD meta-data-model.

first two axioms (23 and 24) define component expressions. For example, Axiom 23 requires

P to be a struct-ct construct and Q to be a construct in a component definition P.Sel->Q.

Axiom 25 requires struct-ct constructs to have at least one component definition. Axioms

26 and 27 require each construct to have exactly one component for each corresponding

component definition. And Axioms 28 and 29 require struct-ct constructs and construct

instances to have unique component selectors.

Figure 2.13 defines axioms for collections (that is, set-ct, bag-ct, and list-ct basic struc-

tures). Axiom 30 requires that membership occurs between construct instances and that

membership formulas are applied only to collections. Axiom 31 defines the same restric-

tions as Axiom 30 for collection-length formulas.

Figures 2.14–2.16 axiomatize the set, bag, and list structures, respectively. Axioms 32,

37, and 44 require collection definitions to occur only for collection constructs. Axioms 33,

38, and 45 require every collection construct to have a collection definition. Axioms 34, 39,

and 46 require a collection construct to have at most one collection definition. Axioms 35,

40, and 47 require collection instances to consist of only valid members, that is, members

49

axiom 30∗: (The membership predicate only applies to collection construct instances.)
c-inst(X, P), c-inst(Y, Q), ¬ ct-inst(P, struct-ct), ¬ ct-inst(P, atomic-ct)⇐ Y ∈ X.

axiom 31∗: (Only collections have an element count.)
c-inst(X, P), ¬ ct-inst(P, struct-ct), ¬ ct-inst(P, atomic-ct) ⇐ |X|=C.

Figure 2.13: Two general axioms for collection structures in the ULD meta-data-model.

axiom 32∗: (Set definitions are between a set construct and another construct.)
ct-inst(P, set-ct), ct-inst(Q, T) ⇐ setof(P, Q).

axiom 33∗: (Set constructs always have a set definition.)
setof(P, Q) ⇐ ct-inst(P, set-ct).

axiom 34: (Set constructs have at most one set definition.)
Q1=Q2 ⇐ ct-inst(P, set-ct), setof(P, Q1), setof(P, Q2).

axiom 35: (Set instances always have valid members.)
c-inst(Y, Q) ⇐ ct-inst(P, set-ct), setof(P, Q), c-inst(X, P), Y∈X.

axiom 36∗: (Set instances always have a length.)
|X|=C ⇐ ct-inst(P, set-ct), c-inst(X, P).

Figure 2.14: The axioms for set structures in the ULD meta-data-model.

that are instances of the construct mentioned in the collection definition. And axioms 36,

41, and 48 require collection instances to have a cardinality.

Axioms 42 and 43 of Figure 2.15 define the duplicate-element predicate for bags. Recall

that for the bag x, construct-instance y, and integer c, the expression y ∈∈ x = c states

that y occurs c times as a member of x. Axiom 42 requires each member of a bag to have

an associated duplicate-element formula. And Axiom 43 limits duplicate-element formulas

to bag construct instances.

Axioms 49 and 50 of Figure 2.16 define the list-index predicate. Axiom 49 requires each

member in a list to have an associated index in the list. And Axiom 50 limits list-index

expressions to members of list construct instances.

Figure 2.17 gives the axioms for unions (that is, union-ct constructs). Axioms 51

50

axiom 37∗: (Bag definitions are between a bag construct and another construct.)
ct-inst(P, bag-ct), ct-inst(Q, T) ⇐ bagof(P, Q).

axiom 38∗: (Bag constructs always have a bag definition.)
bagof(P, Q) ⇐ ct-inst(P, bag-ct).

axiom 39: (Bag constructs have at most one bag definition.)
Q1=Q2 ⇐ ct-inst(P, bag-ct), bagof(P, Q1), bagof(P, Q2).

axiom 40∗: (Bag instances always have valid members.)
c-inst(Y, Q) ⇐ ct-inst(P, bag-ct), bagof(P, Q), c-inst(X, P), Y∈X.

axiom 41∗: (Bag instances always have a length.)
|X|=C ⇐ ct-inst(P, bag-ct), c-inst(X, P).

axiom 42∗: (Bag instances always have a duplicate-element expression for each member.)
Y∈∈X=C ⇐ ct-inst(P, bag-ct), c-inst(X, P), Y∈X.

axiom 43∗: (Only bags have duplicate-element expressions.)
c-inst(X, P), ct-inst(P, bag-ct), c-inst(Y, Q) ⇐ Y∈∈X=C.

Figure 2.15: The axioms for bag structures in the ULD meta-data-model.

and 52 require that every union definition is for a union construct (Axiom 51) and union

constructs have at least one union definition (Axiom 52). Axiom 53 requires each instance

of a union construct to also be an instance of another, non-union construct. Axiom

54 requires each instance of a construct that participates in a union construct to be an

instance of the union construct. Axiom 55 disallows union constructs from conforming to

any other construct. And Axiom 56 restricts union definitions from being acyclic.

Besides serving as a formal description of the ULD and the ULD meta-data-model, the

axiomatization described in this section can be used to (partially) validate a configuration

directly. That is, by using the ULD constraint language to express axioms, we could

execute these axioms using a Datalog or Prolog system to check that a configuration is

valid.

In addition, we believe the axiomatization can be used to infer new facts concerning

configurations and to derive additional statements, for further reasoning. One use of the

axiomatization is to automate the population of a configuration, for example, when we

51

axiom 44∗: (List definitions are between a list construct and another construct.)
ct-inst(P, list-ct), ct-inst(Q, T) ⇐ listof(P, Q).

axiom 45∗: (List constructs always have list definitions.)
listof(P, Q) ⇐ ct-inst(P, list-ct).

axiom 46: (List constructs have at most one definition.)
Q1=Q2 ⇐ ct-inst(P, list-ct), listof(P, Q1), listof(P, Q2).

axiom 47∗: (List instances have only valid members.)
c-inst(Y, Q) ⇐ ct-inst(P, list-ct), listof(P, Q), c-inst(X, P), Y∈X.

axiom 48∗: (List instances always have a length.)
|X|=C ⇐ ct-inst(P, list-ct), c-inst(X, P).

axiom 49∗: (List instances always have an index expression for each member.)
X[I]=Y ⇐ ct-inst(P, list-ct), c-inst(X, P), Y∈X.

axiom 50∗: (Only lists have indexes.)
c-inst(X, P), ct-inst(P, list-ct), c-inst(Y, Q) ⇐ X[I]=Y.

Figure 2.16: The axioms for list structures in the ULD meta-data-model.

wish to transform one configuration into another configuration or an information source

into its corresponding configuration. We describe this use of constraints in more detail in

Chapter 4.

As a simple example, assume we have defined a rule to convert existing information

into an RDF resource (using the RDF(S) data model defined in Example 3). However, we

would like to know if an instance of an RDF resource must be an instance of any other

construct (so our program can define a valid configuration). This question can be answered

using Axiom 54, which states that any instance of a construct that participates in a union

definition is also an instance of the union construct. Therefore, we can use Axiom 54 to

prove that every resource construct instance must also be an objVal constant instance.

As another example, using Axioms 2 and 22 we can derive the following true statement

concerning configurations.

c-inst(P, Q) ⇐ d-inst(X, Y), c-inst(X, P), conf(P, Q, D, R).

This axiom allows us to infer the construct of an instance that participates in a d-inst

52

axiom 51∗: (Union definitions exist only for union constructs.)
ct-inst(P, union-ct), ct-inst(Q, T) ⇐ unionof(P, Q).

axiom 52: (Union constructs are composed of at least two distinct constructs.)
unionof(P, Q1), unionof(P, Q2), ¬ Q1=Q2, ⇐ ct-inst(P, union-ct).

axiom 53: (Union constructs do not have direct instances.)
c-inst(X, Q), ¬ ct-inst(Q, union-ct) ⇐ ct-inst(P, union-ct), c-inst(X, P).

axiom 54∗: (Instances of constructs grouped by union are instances of the union.)
c-inst(Y, P) ⇐ ct-inst(P, union-ct), unionof(P, Q), c-inst(Y, Q).

axiom 55: (Union constructs do not conform to other constructs.)
¬ conf(P, Q, D, R) ⇐ ct-inst(P, union-ct), ct-inst(Q, T), conf(P′, Q′, D, R).

axiom 56: (Union constructs are acyclic.)
P$=P′ ⇐ c-inst(P, union-ct), unionConnected(P, P′).
unionConnected(P1, P2) ← c-inst(P1, union-ct), unionof(P1, P2).
unionConnected(P1, P3) ← c-inst(P1, union-ct), unionof(P1, P2), unionConnected(P2, P3).

Figure 2.17: The axioms for union definitions in the ULD meta-data-model.

relationship. For example, assuming we have access to the RDF(S) data-model definition,

we can use this new axiom with Axiom 27 to determine that the following query is not

well-formed (we discuss these issues in more detail in Chapter 4).

ans(R) ← d-inst(X, Y), c-inst(X, resource), Y.hasRange:R.

In particular, because we know (from the definition of the data model) that a resource

can conform to a class (therefore, Y should be an instance of a class according to our new

axiom) and classes do not have range selectors (from Axiom 27), we can infer that the

above query is not valid.

2.7 Summary

In this chapter, we defined the ULD and compared it to typical meta-data-model archi-

tectures. The ULD offers a flat representation for storing data model constructs, schema,

and data. The ULD can also be used to represent data models that permit optional, par-

tial, and multiple levels of schema. We gave a syntax and first-order logic interpretation

53

for representing configurations using the ULD. We introduced the ULD query language

and constraint language. The query language is based on stratified Datalog¬ and the

constraint language extends the query language to permit existential restrictions. And

finally, we used the constraint language to specify a partial axiomatization of the ULD.

In the next chapter, we use the ULD to define a wide variety of data models, including

their constructs and constraints. The data models chosen demonstrate the power of the

ULD to model various styles of schema conformance. We identify and give a set of short-

hand notations for expressing common data-model constraints. And finally, we describe a

set of properties that can be used to characterize data models in terms of their conformance

requirements.

Chapter 3

Modeling Data Models

In this chapter, we use the ULD to give complete descriptions of a number of existing data

models. Our goal is to support our claim that the ULD can represent a wide variety of

data models. We consider both constructs and constraints of data models, including con-

formance definitions. To help specify structural constraints for defining data models, we

introduce constraint macros in Section 3.1. A constraint macro is a short-hand notation

for specifying commonly-used constraints over constructs. Section 3.2 presents ULD rep-

resentations for the relational [33], E-R [27], and object-oriented [48] data models, which

we consider traditional database representations. In Section 3.2, we extend the definition

of the relational data model given in Chapter 2 with constraints. Section 3.3 presents

ULD representations for the XML [22] and RDF [47] data models, which are primarily

used for storing structured information on the Web. We consider XML with DTDs [22],

which provide a schema language for XML, and RDF with RDF Schema [23], which serves

as the base schema language for RDF, for example, OWL Lite, OWL DL, and OWL Full

[56] are layered on top of RDF Schema. We extend the XML and RDF definitions given in

Chapter 2 with constraints and additional constructs. In Section 3.4, we present the Topic

Map [13] and VIKI [55] hypertext data models. The Topic Map data model is similar to

RDF in that it can be used to annotate Web-based resources (such as Web-pages), how-

ever it consists of fundamentally different structuring primitives more closely related to

structures found in hypertext systems than in semantic networks. The VIKI data model is

a structured hypertext data model that is inherently “schema-later” in that tools based on

VIKI allow users to create structured, un-typed data, but suggest possible schema types

when appropriate. Finally, Section 3.5 introduces a scheme for classifying properties of

54

55

conformance, which we use to summarize the data models presented in this chapter.

There are a number of ways that constraints can be exploited for data models, and we

briefly mention some uses in this chapter (we further discuss uses of constraints in Chapter

4). For a number of data models, constraints can be used not only to clarify and ensure

valid configurations, but also to perform basic reasoning services over structures, such as

type inference given a schema. In addition, because constraints can provide specification

of conformance relationships, they can help further classify data models in terms of their

allowed schema-instance arrangements.

3.1 Expressing Common Constraints

We use constraint macros to easily express common structural constraints for data models.

Macros are typically more concise for expressing constraints than the constraint language

introduced in Chapter 2, but they are not as general: Constraint macros can only be

used for certain classes of constraints. (Note that one could define additional forms of

macros, not described here, as needed.) We consider macros for expressing uniqueness

constraints, which are similar to keys in a relational database, basic collection constraints,

and inclusion constraints, which are similar to foreign keys in the relational data model.

Each macro described in this section produces a corresponding expression in the constraint

language defined in Chapter 2.

3.1.1 Uniqueness Constraints

Given a construct and a set of non-empty component selectors, a uniqueness constraint

requires each instance of the construct in a configuration to have unique values for the

corresponding selectors. The syntax for a uniqueness constraint macro takes the following

form, where c is the name (identifier) of a construct, s1 to sn are component selectors of

c, n ≥ 1, and t is the name of the constraint.

constraint t: (s1, s2, ..., sn keyOf c).

The expression requires every instance of c to have unique values for s1 to sn in a config-

uration. For example, the following constraint (taken from Chapter 2) expresses a typical

56

uniqueness restriction using the ULD constraint language. The constraint requires all

RDF classes in a configuration to have a unique label value.

constraint key1:

C1=C2 ⇐ c-inst(C1, class), c-inst(C2, class), C1.hasLabel:L, C2.hasLabel:L.

This constraint can be equivalently expressed using the following uniqueness constraint

macro.

constraint key1: (hasLabel keyOf class).

When a uniqueness constraint is expressed against a tuple construct (as in the previous

example), the restriction produces the following assertion expressed in the ULD constraint

language, where c is a construct, s1 to sn are the given component selectors of c, and n ≥ 1.

X1=X2 ⇐ c-inst(X1, c), c-inst(X2, c),

X1.s1:Y1, X1.s2:Y2, ..., X1.sn:Yn,

X2.s1:Y1, X2.s2:Y2, ..., X2.sn:Yn.

If a uniqueness constraint requires every instance of a tuple construct to be unique

in a configuration, we say the constraint is configuration based, that is, the constraint

limits all construct instances within the configuration. In our previous example with RDF

class labels, each instance of the class construct must contain a unique label value in the

configuration. Thus, the constraint is configuration-based as are all uniqueness constraints

expressed directly against tuple constructs.

Alternatively, a collection-based uniqueness constraint restricts tuple instances only

within a collection as opposed to within the entire configuration. For a collection construct

c1 defined over a tuple construct c2, a collection-based uniqueness constraint restricts the

members of c1 to those instances of c2 that have unique selector values. The macro

syntax for defining collection-based uniqueness constraints is identical to the syntax for

expressing configuration-based uniqueness constraints. (We use the type of construct be-

ing restricted to distinguish between collection-based and configuration-based uniqueness

constraints.) For instance, the following collection-based uniqueness constraint requires

57

attribute lists (that is, instances of the attList construct) in the relational data model to

contain uniquely named attribute instances. Thus, attList collections may not contain

attribute items with the same name.

constraint key2: (hasName keyOf attList)

A constraint expressed using a collection-based uniqueness macro produces the following

ULD constraint language assertion, where c is the collection construct, s1 to sn are the

associated component selectors, and n ≥ 1.

X1=X2 ⇐ c-inst(X, c), X1∈X, X2∈X,

X1.s1:Y1, X1.s2:Y2, ..., X1.sn:Yn,

X2.s1:Y1, X2.s2:Y2, ..., X2.sn:Yn.

Certain collection-based uniqueness constraints can be inferred from configuration-

based uniqueness constraints. Namely, if a set construct c1 is defined over c2 and c2 has a

uniqueness constraint over selectors s1 to sn, a collection-based uniqueness constraint also

implicitly exists for c1 over selectors s1 to sn. In addition, constraints similar to relational

superkeys [71] can be derived from uniqueness restrictions. For a construct with selectors

S and a uniqueness constraint over selectors Sk for Sk ⊆ S, every set of selectors Sk ∪ {s}

for one or more s ∈ S−Sk is also a valid, although more general, uniqueness constraint for

the construct.

Finally, we allow configuration-based uniqueness constraints to be defined over union

constructs in addition to tuple constructs. For example, consider a union construct c

that groups tuple constructs c1 and c2, and both c1 and c2 share a component selector

s. Defining s as a key for c, for example, using the uniqueness constraint (s keyOf c),

restricts the set of instances of c1 and c2 in a configuration such that each instance has a

unique value for s. Note that for the case of union constructs, the same generated ULD

constraint (above) still correctly defines uniqueness.

3.1.2 Collection Constraints

Here we describe two additional collection-based constraint macros. The first is called

the non-empty collection constraint macro, which asserts that every instance of a given

58

collection construct in a configuration contains at least one item. The syntax and corre-

sponding ULD constraint-language assertion for the non-empty collection macro is given

below, where c is a collection construct and t is the name of the constraint.

constraint t: (c isNonEmpty)

Y∈X ⇐ c-inst(X, c).

The second macro is called the distinct-collection constraint and states that every

instance of a given collection construct contains unique values. For example, given a list

construct c with a distinct-collection constraint, each instance of c in a configuration must

contain a unique collection of identifiers. The macro takes the following form, where c is

a collection construct and t is the name of the constraint.

constraint t: (c isDistinct)

If c is a set construct, the following ULD constraint-language assertion is generated from

the distinct-collection constraint macro.

X1=X2 ⇐ c-inst(X1, c), c-inst(X2, c), ¬hasDifferentSetItem(X1, X2).

hasDifferentSetItem(X1, X2) ← c-inst(X1, c), c-inst(X2, c), Y∈X1, ¬Y∈X2.

hasDifferentSetItem(X1, X2) ← c-inst(X1, c), c-inst(X2, c), Y∈X2, ¬Y∈X1.

Similarly, if c is a bag construct, the following ULD constraint-language assertion is gen-

erated. Recall that the expression y ∈∈ x = n states that y is in the bag x, n times.

X1=X2 ⇐ c-inst(X1, c), c-inst(X2, c), ¬hasDifferentBagItem(X1, X2).

hasDifferentBagItem(X1, X2) ← c-inst(X1, c), c-inst(X2, c), Y∈X1, ¬Y∈X2.

hasDifferentBagItem(X1, X2) ← c-inst(X1, c), c-inst(X2, c), Y∈X2, ¬Y∈X1.

hasDifferentBagItem(X1, X2) ← c-inst(X1, c), c-inst(X2, c), Y∈X1, Y∈X2,

Y∈∈X1=N, Y∈∈X2 $=N.

59

Finally, for a list construct c, the following ULD constraint-language assertion is generated

from the distinct-collection macro.

X1=X2 ⇐ c-inst(X1, c), c-inst(X2, c), ¬hasDifferentListItem(X1, X2).

hasDifferentListItem(X1, X2) ← c-inst(X1, c), c-inst(X2, c), X1[I]=Y, X2[I]$=Y.

hasDifferentListItem(X1, X2) ← c-inst(X1, c), c-inst(X2, c), X2[I]=Y, X1[I]$=Y.

3.1.3 Inclusion Constraints

Inclusion constraint macros are used to ensure that certain construct instances always

participate, that is, are always included, in some other construct instance. Here we con-

sider macros for membership, joined-membership, joined-subset, and component inclusion

constraints.

An example of an inclusion constraint occurs in the relational model, in which every

tuple must belong to a table. In other words, it is not possible for a tuple to exist

independently of a table. Because tuples are members of table collections, we call the

restriction a membership inclusion constraint. The macro for a membership inclusion

constraint takes the following form, where c1 is a construct, c2 is a collection construct

defined over c1, and t is the name of the constraint.

constraint t: (c1 always(∈) c2).

The constraint states that every instance of c1 in a configuration is always a member of an

instance of c2. For example, we would use the macro (tuple always(∈) table) to express the

previous relational inclusion constraint. The following ULD constraint-language assertion

is produced by a membership inclusion macro.

c-inst(Y, c2), X∈Y ⇐ c-inst(X, c1).

Often, it is useful to define inclusion constraints in the context of other constructs.

For example, in the relational model, every attribute must be associated with a particular

relation. This restriction can be captured using the following inclusion macro, where

60

the relation construct has the selector definition hasAtts that leads to the attList

construct, which is defined as a list of attributes.

constraint inc-1: (attribute always(∈) relation.hasAtts).

The constraint requires that each attribute is a member of at least one relation’s attribute

list. As shown, we allow inclusion constraints to contain simple path expressions. A

simple path expression has the form c.s1.s2...sn, where c is a tuple construct (or a union

of tuple constructs), and s1 to sn are tuple selectors. We call c the base construct of

the path expression. The following expression represents the general form for membership

inclusion macros with simple path expressions, where c1 and c2 are base constructs, m ≥ 0,

n ≥ 0, and t is the name of the construct.

constraint t: (c1.s11.s12...s1n always(∈) c2.s21.s22...s2m).

The following ULD constraint-language assertion is produced by the general form of the

membership inclusion macro.

c-inst(Y, c2), Y.s21:Y1, Y1.s22:Y2, ..., Ym−1.s2m:Ym, Xn∈Ym ⇐

c-inst(X, c1), X.s11:X1, X1.s12:X2, ..., Xn−1.s1n:Xn.

To illustrate, the following ULD constraint is generated from the previous relational macro

(inc-1).

c-inst(Y, relation), Y.hasAtts:Y1, X∈Y1 ⇐ c-inst(X, attribute).

A joined inclusion-constraint macro is a special case of an inclusion-constraint macro

in which the base construct c1 is equal to the base construct c2 (that is, c1 and c2 are the

same identifier). In a joined inclusion-constraint macro, we treat each side of the constraint

as though it denotes the same base-construct instance. For example, for any instance x

of construct c with collection instance y such that x.s:y, the joined inclusion-constraint

macro (c always!(∈) c.s) requires x to be a member of y. (Note that we use always! to

distinguish a joined inclusion-constraint macro from a normal inclusion-constraint macro.)

61

The following expression represents the general form for joined membership inclusion-

constraint macros, where c is the base construct, m ≥ 0, n ≥ 0, and t is the name of the

constraint.

constraint t: (c.s11.s12...s1n always!(∈) c.s21.s22...s2m).

The following ULD constraint-language assertion is generated for joined membership

inclusion-constraint macros, where c denotes the base construct.

X.s21:Y1, Y1.s22:Y2, ..., Ym−1.s2m:Ym, Xn∈Ym ⇐

c-inst(X,c), X.s11:X1, X1.s12:X2, ..., Xn−1.s1n:Xn.

For example, consider the following joined membership-inclusion constraint for the

E-R data model (see Section 3.2.3). A relationship type in the E-R data model contains

a list of roles, which can optionally be named. The roleName construct assigns a name

to a particular role for a relationship type. The constraint below requires the role being

named to be a valid role for the relationship type.

constraint inc-2: (roleName.forRole always!(∈) roleName.forType.hasRoles).

The following ULD constraint is generated from the macro.

X.forType:Y, Y.hasRoles:Y1, X1∈Y1 ⇐ c-inst(X, roleName), X.forRole:X1.

We consider subset and component inclusion constraints in addition to membership

inclusion constraints. A subset inclusion constraint occurs between two collection con-

structs1 and requires a subset relationship between their instances. Here, we only consider

joined subset inclusion-constraint macros, which take the following form, where c is the

base construct, n ≥ 0, m ≥ 0, and t is the name of the constraint. (We discuss general

subset inclusion constraints below.)

constraint t: (c.s11.s12...s1n always!(⊆) c.s21.s22...s2m).

1The subset relation is applied to lists and bags as if they were sets, that is, bags and lists are viewed
as sets when testing for a subset relationship.

62

The following constraint is generated for each joined subset-inclusion macro for base con-

struct c.

X.s21:Y1, Y1.s22:Y2, ..., Ym−1.s2m:Ym, Z∈Ym ⇐

c-inst(X, c), X.s11:X1, X1.s12:X2, ..., Xn−1.s1n:Xn, Z∈Xn.

The next relational data-model constraint is an example of a joined subset-inclusion

macro. A primary-key construct consists of a list of attributes and a relation (which is the

relation that the primary key restricts). The constraint below states that the primary-key

attributes are a subset of the attributes of the relation that the primary key is defined for.

constraint inc-3: (pKey.keyAtts always!(⊆) pKey.forRel.hasAtts)

The following ULD constraint is generated from the macro.

X.forRel:Y1, Y1.hasAtts:Y2, Z∈Y2 ⇐ c-inst(X, pKey), X.keyAtts:X1, Z∈X1.

A component inclusion-constraint macro requires every instance x of a construct c1

(or an instance of the path started by c1) to participate as a value of the selector s of

some instance y of c2 (or an instance of the path started by c2). That is, in the case where

no additional paths are given for c1 or c2, y.s:x must be true. The component inclusion

macro takes the following form, where c1 and c2 are constructs, n ≥ 0, m ≥ 0, and t is

the name of the constraint.

constraint t: (c1.s11.s12...s1n always(=) c2.s21.s22...s2m.s).

The following ULD constraint-language assertion is produced by a component inclusion

macro for base constructs c1 and c2.

c-inst(Y,c2), Y.s21:Y1, Y1.s22:Y2, ..., Ym−1.s2m:Ym, Ym.s:Xn ⇐

c-inst(X,c1), X.s11:X1, X1.s12:X2, ..., Xn−1.s1n:Xn.

As an example, the following component inclusion macro requires all attList constructs

in the relational model to occur in a relation.

63

constraint inc-4: (attList always(=) relation.hasAtts)

The following ULD constraint is generated from the macro.

c-inst(Y, relation), Y.hasAtts:X ⇐ c-inst(X, attList).

We do not consider joined component inclusion-constraint macros because none of the

data models described in this chapter require the constraint. However, generating a ULD

constraint assertion for a joined component inclusion constraint is straightforward.

Finally, we note the following two properties of inclusion constraint macros. First,

for any construct c, the macro (c.s1...sn always!(⊆) c.s1...sn) for n ≥ 0 is guaranteed to

be satisfied in every configuration (assuming the macro is well-formed). Second, certain

inclusion constraints are implied by other, more general inclusion constraints, which we

list below. We use p and p′ to denote arbitrary path expressions. In addition, we use the

shorthand notation p " c (that is, p “leads to” c) if p is a path expression c1.s1.s2...sn

such that c1.s1->c2, c2.s2->c3, ..., and cn−1.sn->c, for n ≥ 0. Note that, if n = 0 and

p = c, then trivially c " c.

• (c1 always(∈) p′) implies (p always(∈) p′), where p " c1.

• (c1 always(=) p′.s) implies (p always(=) p′.s), where p " c1.

• (c.s11...s1n always!(⊆) c.s21...s2m) implies (p′.s11...s1n always!(⊆) p′.s21...s2m), for

all p′ such that p′ " c.

• (p always!(∈) p′) implies (p always(∈) p′).

3.1.4 Digression: Regular Subset Inclusion Constraints

We end this section by briefly discussing regular subset inclusion-constraint macros, which

cannot be converted to equivalent ULD constraints. We note that for the data models

described in this chapter, regular inclusion constraints are not required. However, consid-

ering non-joined subset inclusion constraints highlights a possible extension to the ULD

constraint language.

64

A general subset-inclusion macro takes the following form, where c1 and c2 are con-

structs, n ≥ 0, m ≥ 0, and t is the name of the constraint.

constraint t: (c.s11.s12...s1n always(⊆) c.s21.s22...s2m).

For example, given collection constructs c1 and c2, the macro (c1 always(⊆) c2) states that

for every instance i1 of c1 there is an instance i2 of c2 such that each member of i1 is also

a member of i2.

As noted, subset inclusion-constraint macros cannot be expressed in the ULD con-

straint language, but the previous constraint can be expressed in first-order logic as fol-

lows.

∀x∃y∀z (c-inst(x,c1) ∧ z ∈ x ⇒ c-inst(y,c2) ∧ z ∈ y)

Notice that this expression is equivalent to the first-order logic expression: ∀x∃y¬∃z (c-

inst(x,c1) ∧ z ∈ x ∧ ¬(c-inst(y,c2) ∧ z ∈ y)), which can be read as “For every x there is a

y that makes the statement ‘there is a z in x that is not in y’ false.” To convert the first-

order logic expression to an equivalent ULD constraint-language assertion requires the

ability to iterate over (using negation) each z in a collection x for a particular y. However,

we believe it is possible to support subset inclusion constraints by extending the ULD

constraint language to include intensional predicates in the head of a constraint assertion,

as shown in the following program. Note that such an extension does not require any

modification to the Datalog¬ representation of ULD constraints presented in Chapter 2.

c-inst(Y,c1), subset(X,Y) ⇐ c-inst(X,c1).

subset(X,Y) ← c-inst(X,c1), c-inst(Y,c2), ¬notSubset(X,Y).

notSubset(X,Y) ← c-inst(X,c1), c-inst(Y,c2), Z∈X, ¬Z∈Y.

3.2 Traditional Database Data Models

This section gives ULD descriptions for traditional database data models. We present the

relational data model in Section 3.2.1, with identical constructs as those in Example 1

of Chapter 2, but extended with constraints. We then consider a typical object-oriented

65

data model in Section 3.2.2. And finally, we describe the Entity-Relationship (E-R) data

model [27] in Section 3.2.3, which combines some of the structures of the relational and

object-oriented data models, but with slightly looser conformance constraints.

3.2.1 Relational Data Models

The relational data model was first introduced by Codd [33] and is the most widely used

and implemented data model for databases [71]. The relational data-model constructs and

constraints are given below (Data-Model 1). Note that we assume that a configuration

stores information for a single relational database and that there is a special, atomic value

null that is designated to represent the null value.

In the relational-model specification given below, the relation construct corresponds to

a table definition, where each relation in a configuration has a unique name and a list of

attribute definitions. A table serves as the extent for a relation. Each table must conform

to exactly one relation, and a relation has exactly one table as an instance. Thus, tables

and relations are one-to-one. Tables consist of tuples, and each tuple in a table contains

a value for each attribute of the table’s corresponding relation. We model a tuple as a list

of values, where the i-th value is a value for the i-th attribute of the relation. The number

of values in a tuple is precisely the number of attributes in its corresponding relation.

We consider the typical integrity constraints for the relation model, that is, primary

and foreign keys. Each relation can have at most one primary key (pKey). A primary key

designates one or more relation attributes as unique, that is, the combination of values

that form the primary key must be unique for each tuple in a table. A foreign key (fkey)

defines a referential integrity constraint in which each tuple in a table can reference a

key-value in a target table. A foreign key constraint requires the designated values of the

foreign-key attributes in a source relation to contain either corresponding values of the

primary-key attributes in a target relation or null values.

As shown, rel-1 through rel-16 are constraints for the relational data model that can

be expressed using macros. The first four constraints state that attribute lists, primary-

and foreign-key attribute lists, and tuples are non-empty collections. Thus, each relation

must have at least one attribute, and similarly, each tuple must have at least one value.

66

If a primary or foreign key is defined, it must contain at least one attribute. The next

six constraints, rel-5 through rel-10, define uniqueness restrictions. In particular, every

relation in a configuration has a unique name, each attribute in an attribute list (including

those for foreign and primary keys) has a unique name, each relation can have at most

one primary key (that is, each primary key must have a unique forRel value), and each

relation can have at most one foreign key for a particular set of attributes and target

relation. Constraint rel-11 requires attributes to be nested within attribute lists (that is,

every attribute must be assigned to some relation). Constraints rel-12 and rel-13 require

primary- and foreign-key attribute lists to always be associated with a primary and foreign

key, respectively. Constraint rel-14 requires tuples to always be contained within a table.

The last two constraints (rel-15 and rel-16) define the subset relationship between a primary

(foreign) key’s attribute list and the corresponding relation’s attribute list.

The next three constraints, rel-17 through rel-19, cannot be expressed using macros.

Each of these constraints further defines the foreign-key construct. The first constraint

(rel-22) requires each foreign key to reference (via the toRel selector) a relation with a

primary key. The second constraint (rel-23) requires the number of attributes in the source

relation designated by the foreign key to be the same as the number of attributes in the

target relation’s primary key. The last constraint (rel-24) requires the source attributes to

have the same domain as their corresponding attributes in the target relation’s primary

key. We note that the attributes of the source relation designated by the foreign key are

assumed to be ordered to match the order of the primary key attributes in the target

relation.

The remaining constraints define conformance for the relational model. The first three

conformance constraints define the relationship between tables, tuples, relations, and at-

tributes. The last two constraints describe primary- and foreign-key restrictions on tuples.

To model the foreign-key restriction, we use a constraint assertion that is not satisfiable;

a positive d-inst formula appears in the body of the rule and a negative d-inst formula

appears in the head of the rule, where both formulas have identical parameters. Note that

the body of the assertion succeeds only if the foreign-key restriction is violated. Thus,

whenever the body of the constraint holds the constraint assertion derives (or requires)

67

a contradiction. Therefore, although the assertion can never be satisfied, it accurately

captures the semantics of the foreign-key restriction.

Data-Model 1 (The relational data-model constructs and constraints)

construct relation = {hasName->uldString, hasAtts->attList}

construct attList = list of attribute

construct attribute = {hasName->uldString, hasDomain->uldValuetype}

construct pKey = {forRel->relation, keyAtts->pKeyAttList}

construct fKey = {forRel->relation, toRel->relation, keyAtts->fKeyAttList}

construct pKeyAttList = list of attribute

construct fKeyAttList = list of attribute

construct table = bag of tuple conf(domain=1,range=1):relation

construct tuple = list of uldValue conf(domain=*,range=1):relation

constraint rel-1: (attList isNonEmpty).
constraint rel-2: (pKeyAttList isNonEmpty).
constraint rel-3: (fKeyAttList isNonEmpty).
constraint rel-4: (tuple isNonEmpty).

constraint rel-5: (hasName keyOf relation).
constraint rel-6: (hasName keyOf attList).
constraint rel-7: (forRel keyOf pKey).
constraint rel-8: (forRel, toRel, keyAtts keyOf fKey).
constraint rel-9: (hasName keyOf pKeyAttList).
constraint rel-10: (hasName keyOf fKeyAttList).

constraint rel-11: (attList always(=) relation.hasAtts).
constraint rel-12: (attribute always(∈) attList).
constraint rel-13: (pKeyAttList always(=) pKey.keyAtts).
constraint rel-14: (fKeyAttList always(=) fKey.keyAtts).
constraint rel-15: (pKey.keyAtts always!(⊆) pKey.forRel.hasAtts).
constraint rel-16: (fKey.keyAtts always!(⊆) fKey.forRel.hasAtts).

constraint rel-17: (A foreign key always refers to a target relation that has a primary key.)
c-inst(P, pKey), P.forRel:R ⇐ c-inst(F, fKey), F.toRel:R.

constraint rel-18: (Number of foreign key attributes must equal number of key attributes.)
|Ap|=N ⇐ c-inst(F, fKey), F.toRel:R, c-inst(P, pKey), P.forRel:R, P.keyAtts:Ap,

68

F.keyAtts:Af , |Af |=N.

constraint rel-19: (Domain of foreign key attributes must equal domain of key attributes.)
Ap[I]=X2, X2.hasDomain:D ⇐ c-inst(F, fKey), F.toRel:R, c-inst(P, pKey), P.forRel:R,

P.keyAtts:Ap, F.keyAtts:Af , Af [I]=X1, X1.hasDomain:D.

constraint rel-conf1: (Every tuple in a table conforms to the corresponding relation)
d-inst(T, R) ⇐ c-inst(B, table), c-inst(R, relation), d-inst(B, R), T∈B.

constraint rel-conf2: (Tuple values conform to corresponding attribute domains)
d-inst(V, D) ⇐ c-inst(T, tuple), c-inst(R, relation), d-inst(T, R), R.hasAtts:AR,

Ar[I]=A, A.hasDomain:D, T[I]=V.

constraint rel-conf3: (Tuples have the same number of values as relation attributes)
|T|=N ⇐ c-inst(T, tuple), c-inst(R, relation), d-inst(T, R), R.hasAtts:AR, |Ar|=N.

constraint rel-conf4: (Primary key constraint)
T1=T2 ⇐ c-inst(T1, tuple), c-inst(T2, tuple), d-inst(T1, R), d-inst(T2, R),

¬differ(T1, T2, R).

differ(T1, T2, R) ← c-inst(T1, tuple), c-inst(T2, tuple), d-inst(T1, R), d-inst(T2, R),
c-inst(P, pKey), P.forRel:R, P.keyAtts:Ap, R.hasAtts:Ar, X1∈Ap, X2∈Ar,
X1.hasName:N, X2.hasName:N, Ar[I]=X2, T1[I]=V1, T2[I]=V2, V1 $=V2.

constraint rel-conf5: (Foreign key constraint)
¬d-inst(T, Rs) ⇐ c-inst(F, fKey), F.forRel:Rs, c-inst(T, tuple), d-inst(T, Rs),

¬satisfyFKeyConstraint(T, F).

satisfyFKeyConstraint(T, F) ← c-inst(F, fKey), F.forRel:Rs, c-inst(T, tuple), d-inst(T, Rs),
¬hasNonNullFKeyAtts(T, F).

satisfyFKeyConstraint(T, F) ← c-inst(F, fKey), F.forRel:Rs, c-inst(T, tuple), d-inst(T, Rs),
¬hasNonMatchingTuple(T, F).

hasNonNullFKeyAtts(T, F) ← c-inst(F, fKey), F.forRel:Rs, d-inst(T, Rs), F.keyAtts:ALf ,
Rs.hasAtts:AL, AL[I]=A, Af∈ALf , A.hasName:N, Af .hasName:N, T[I]$=null.

hasNonMatchingTuple(T, F) ← c-inst(F, fKey), F.forRel:Rs, c-inst(T, tuple), d-inst(T, Rs),
F.keyAtts:ALf , Rs.hasAtts:AL, A∈AL, ALf [I]=Af , A.hasName:N, Af .hasName:N,
¬matchingAttributeVal(T, I, F).

matchingAttributeVal(Ts, I, F) ← c-inst(F, fKey), c-inst(P, pKey), F.forRel:Rs, F.toRel:Rt,

69

P.forRel:Rt, c-inst(Ts, tuple), d-inst(T, Rs), c-inst(Tt, tuple), d-inst(T, Rt),
Rs.hasAtts:ALs, Rt.hasAtts:ALt, ALs[Is]=As, ALt[It]=At, F.keyAtts:ALf , ALf [I]=Af ,
Af .hasName:Nf , As.hasName:Nf , P.keyAtts:ALp, ALp[I]=Ap, Ap.hasName:Np,
At.hasName:Np, Ts[Is]=V, Tt[It]=V.

3.2.2 Object-Oriented Data Models

Object-oriented database data models extend relational data models by adding structured

data types and object identifiers (to distinguish among objects with equivalent values)

[48]. We present a version of the O2 data model [48, 49] (Data-Model 2, below), which has

played a significant role in shaping the ODMG Object Model [26]—an evolving standard

for object-based data management.

We simplify the data model of O2 as follows. Class names denote implicit extents,

that is, every class name can be used as a collection that contains its designated instances.

Each class has a tuple-structured type that defines a set of attributes, each of which can

be basic (that is, contain atomic types) or structured. A structured type is either another

class or a set type, where a set type can be arbitrarily nested with structured types. (In the

ODMG Object Model and in O2, structured types include tuple structures in addition to

class and set types). Class types imply an implicit subsumption hierarchy, which may be

more complete than the user-specified class hierarchy (that is, there may be classes whose

types are compatible, but are not designated as subclasses). We assume each object has

an identifier and a value, which is either atomic or structured. We do not consider method

signatures, although they can easily be added to the definition below.

In an O2 database, every object must belong to (that is, be an instance of) at least

one class extent. An object is allowed to exist in more than one class extent as allowed by

type subsumption. Finally, the O2 data model allows only single inheritance, although it

can be extended to support multiple class inheritance [49].

We note that in both the ODMG Object Model and the O2 data model, attributes can

contain arbitrarily nested tuple structures in addition to the structured types previously

defined. However, when arbitrarily nested structures are considered, the corresponding

restriction for checking type subsumption (oodm-19 below) cannot be extended using the

70

ULD constraint language. That is, we cannot construct a stratified Datalog¬ program that

accurately captures the class-superclass typing constraint for arbitrarily nested structures

(as currently defined). In particular, an additional compatibleAttribute rule is needed to

ensure that an attribute (variable A2 in compatibleAttribute) with a nested tuple type

is present in the given tuple type (variable T1 in compatibleAttribute). Performing this

check requires negation through the incompatibleTypes formula. Thus, incompatibleTypes

would call a compatibleAttribute formula, and compatibleAttribute would call a negated

incompatibleTypes formula. We note that, from a modeling perspective, little is gained

by using nested tuple types, because classes, which can essentially represent named tuple

types, can be arbitrarily nested.

Data-Model 2 (The O2 data-model constructs and constraints)

construct class = {hasName->uldString, hasType->tupleType, hasSuper->class}

construct tupleType = set of attribute

construct attribute = {hasName->uldString, hasType->nestedType}

construct nestedType = class | basicType | setType

construct basicType = {hasType->uldValueType}

construct setType = {ofType->nestedType}

construct object = {hasId->uldString, hasValue->tupleValue}

conf(domain=*,range=+):class

construct tupleValue = set of property

construct property = {hasName->uldString, hasValue->nestedValue}

construct nestedValue = object | basicValue | setValue

construct basicValue = {hasValue->uldValue}

construct setValue = set of nestedValue

constraint oodm-1: (tupleType isDistinct).
constraint oodm-2: (setType isDistinct).
constraint oodm-3: (tupleValue isDistinct).
constraint oodm-4: (setValue isDistinct).

constraint oodm-5: (hasName keyOf class).
constraint oodm-6: (hasName keyOf tupleType).
constraint oodm-7: (hasId keyOf object).
constraint oodm-8: (hasValue keyOf basicValue).

71

constraint oodm-9: (hasName keyOf tupleValue).

constraint oodm-10: (attribute always(∈) tupleType).
constraint oodm-11: (property always(∈) tupleValue).

constraint oodm-12: (Each tuple type must be connected to a class)
c-inst(C, class), C.hasType:T ⇐ c-inst(T, tupleType).

constraint oodm-13: (Each non-class nested type must be connected to a class)
c-inst(C, class), C.hasType:T ⇐ c-inst(T, nestedType), ¬ c-inst(T, class),

¬ hasParentType(T).

hasParentType(T) ← c-inst(Ts, setType), Ts.ofType:T.
hasParentType(T) ← c-inst(Ta, attribute), Ta.hasType:T.

constraint oodm-14: (Each tuple value must be connected to an object)
c-inst(O, object), O.hasValue:T ⇐ c-inst(T, tupleValue)

constraint oodm-15: (Each non-object nested value must be connected to an object)
c-inst(O, object), O.hasValue:V ⇐ c-inst(V, nestedValue), ¬ c-inst(V, object),

¬ hasParentValue(V).

hasParentValue(V) ← c-inst(Vs, setValue), V∈Vs.
hasParentValue(V) ← c-inst(Vp, property), Vp.hasValue:V.

constraint oodm-16: (Subclass hierarchy is acyclic)
¬ C1.hasSuper:C2 ⇐ c-inst(C1, class), c-inst(C2, class), subClassClosure(C2, C1).

subClassClosure(C1, C1) ← c-inst(C1, class).
subClassClosure(C1, C3) ← c-inst(C1, class), c-inst(C3, class), C1.hasSuper:C2,

subClassClosure(C2, C3).

constraint oodm-17: (Set types cannot be infinite)
T1 $=T2 ⇐ hasNestedSetType(T1, T2).

hasNestedSetType(T1, T2) ← c-inst(T1, setType), c-inst(T2, setType), T1.ofType:T2.
hasNestedSetType(T1, T3) ← c-inst(T1, setType), c-inst(T3, setType), T1.ofType:T2,

hasNestedSetType(T2, T3).

constraint oodm-18: (Set values cannot be recursive)
V1 $=V2 ⇐ hasNestedSetValue(V1, V2).

72

hasNestedSetValue(V1, V2) ← c-inst(V1, setValue), c-inst(V2, setValue), V2∈V1.
hasNestedSetValue(V1, V3) ← c-inst(V1, setValue), c-inst(V3, setValue), V2∈V1,

hasNestedSetValue(V2, V3).

constraint oodm-19: (Subclass type must be compatible with superclass type.)
¬ C1.hasSuper:C2 ⇐ c-inst(C1, class), c-inst(C2, class), C1.hasType:T1, C2.hasType:T2,

incompatibleTypes(T1, T2).

incompatibleTypes(T1, T2) ← c-inst(T1, tupleType), c-inst(T2, tupleType), A2∈T2,
¬ compatibleAttribute(A2, T1).

compatibleAttribute(A2, T1) ← A1∈T1, A1.hasName:N, A2.hasName:N, A1.hasType:T′
1,

A2.hasType:T′
2, c-inst(T′

1, class), c-inst(T′
2, class), subClassClosure(T′

1, T′
2).

compatibleAttribute(A2, T1) ← A1∈T1, A1.hasName:N, A2.hasName:N, A1.hasType:T′
1,

A2.hasType:T′
2, c-inst(T′

1, basicType), c-inst(T′
2, basicType), T′

1.hasType:T,
T′

2.hasType:T.
compatibleAttribute(A2, T1) ← A1∈T1, A1.hasName:N, A2.hasName:N, A1.hasType:T′

1,
A2.hasType:T′

2, c-inst(T′
1, setType), c-inst(T′

2, setType), setSubType(T′
1, T′

2).

setSubType(T1, T2) ← c-inst(T1, setType), c-inst(T2, setType), T1.ofType:T′
1,

T2.ofType:T′
2, c-inst(T′

1, class), c-inst(T′
2, class), subClassClosure(T′

1, T′
2).

setSubType(T1, T2) ← c-inst(T1, setType), c-inst(T2, setType), T1.ofType:T′
1,

T2.ofType:T′
2, c-inst(T′

1, basicType), c-inst(T′
2, basicType), T′

1.hasType:T,
T′

2.hasType:T.
setSubType(T1, T2) ← c-inst(T1, setType), c-inst(T2, setType), T1.ofType:T′

1,
T2.ofType:T′

2, c-inst(T′
1, setType), c-inst(T′

2, setType), setSubType(T′
1, T′

2).

constraint oodm-conf1: (Objects are instances of their corresponding superclasses)
d-inst(O, C2) ⇐ c-inst(O, object), d-inst(O, C1), C1.hasSuper:C2.

constraint oodm-conf2: (Objects must have compatible types to be class instances)
¬d-inst(O, C) ⇐ c-inst(O, object), c-inst(C, class), O.hasValue:V, C.hasType:T,

incompatibleValueForType(V, T).

incompatibleValueForType(V, T) ← c-inst(V, tupleValue), c-inst(T, tupleType), A∈T,
¬ hasPropertyForAttribute(V, A).

hasPropertyForAttribute(V, A) ← c-inst(V, tupleValue), c-inst(A, attribute),
V.hasName:N, A.hasName:N, V.hasValue:V′, A.hasType:T, c-inst(V′, object),
c-inst(T, class), d-inst(V′, T).

hasPropertyForAttribute(V, A) ← c-inst(V, tupleValue), c-inst(A, attribute),

73

V.hasName:N, A.hasName:N, V.hasValue:V′, A.hasType:T,
c-inst(V′, basicValue), c-inst(T, basicType), V′.hasValue:X, T.hasType:T′,
d-inst(X, T′).

hasPropertyForAttribute(V, A) ← c-inst(V, tupleValue), c-inst(A, attribute),
V.hasName:N, A.hasName:N, V.hasValue:V′, A.hasType:T, c-inst(V′, setValue),
c-inst(T, setType), ¬ incompatValueForSetType(V′, T).

incompatibleValueForSetType(V, T) ← c-inst(V, setValue), c-inst(T, setType), X∈V,
T.hasType:T′, c-inst(X′, setValue), ¬ c-inst(T′, setType).

incompatibleValueForSetType(V, T) ← c-inst(V, setValue), c-inst(T, setType), X∈V,
T.hasType:T′, c-inst(X, basicValue), ¬ c-inst(T′, basicType).

incompatibleValueForSetType(V, T) ← c-inst(V, setValue), c-inst(T, setType), X∈V,
T.hasType:T′, c-inst(X, objectValue), ¬ c-inst(T′, class).

incompatibleValueForSetType(V, T) ← c-inst(V, setValue), c-inst(T, setType), X∈V,
c-inst(X, basicValue), X.hasValue:X′, T.hasType:T′, c-inst(T′, basicType),
¬ d-inst(X′, T′).

incompatibleValueForSetType(V, T) ← c-inst(V, setValue), c-inst(T, setType), X∈V,
c-inst(X, object), T.hasType:T′, c-inst(T′, class), ¬ d-inst(X, T′).

incompatibleValueForSetType(V, T) ← c-inst(V, setValue), c-inst(T, setType), X∈V,
c-inst(X, setValue), T.hasType:T′, incompatibleValueForSetType(X, T′).

3.2.3 Entity-Relationship Data Models

The E-R data model [27] is primarily used as a conceptual modeling language for designing

database schemas [71]. In particular, it can be used to define a conceptual schema that

can then be mapped to relational table definitions (the logical schema) for storing data.

Information in the E-R data model is separated into entities and (explicit) relationships

among entities. Both entities and relationships are grouped into types forming an E-R

schema. An entity type consists of one or more attribute definitions. Attributes within

an entity type can form keys, and each entity type must have exactly one primary key. A

relationship type, which links two or more entity types, may also have attributes (although

they are not required). Relationships do not have explicit keys. Instead, the primary key

for a relationship is the combination of the primary keys of the entities being related. A

relationship type, however, can be constrained using cardinality restrictions, which limit

the participation of entities in the instances of the relationship type. A relationship type

may also define role names for each entity type that participates in the relationship. The

74

role name represents the function an entity plays in the relationship and is useful for

distinguishing the roles played in a recursive relationship type, that is, a relationship type

that connects an entity type to itself.

An entity type can be designated as a weak entity type when its identity depends on

another entity type. A weak entity type is specified using a combination of one or more of

its attributes, called a partial key, and an identifying relationship type that connects the

entity type to the entity type it depends on. Note that a partial key is required for a weak

entity type. Thus, the primary key of a weak entity type consists of its partial key combined

with its identifying entity type’s primary key. A typical example of a weak entity is an

employee dependent, where the dependent is covered by the employee’s health insurance.

Little information is recorded for each dependent; for example, a name and a birthdate

may be the only attributes. The name of the dependent serves as its partial key and a

relationship such as dependent of serves as its identifying relationship. A dependent entity

is uniquely identified by specifying its name (the partial key) combined with an employee

number (assuming the employee number is the primary key for an employee), where the

dependent is connected to the employee through a dependent of relationship. Note that for

each identifying entity-type instance, the instance’s corresponding weak-entity instances

are required to have distinct values for the partial key.

In the E-R data model, an entity is considered an instance of an entity type whenever

it conforms to the specification of the type. Thus, the instance-of relationship in the

E-R data model follows from the structure of entities, which is in contrast to object-

oriented data models, where the user must explicitly specify the type of an object. It is

also possible for an entity or relationship to exist without being classified by an available

entity or relationship type, respectively. Most current applications of the E-R data model,

however, assume schema is required, and only consider entities and relationships that are

associated with types. This assumption is found in applications that use an E-R schema

as a conceptual model for an underlying relational data-model representation.

We describe the E-R data model below (Data-Model 3). We assume that attributes

are always single-valued (and not composite), that role names on relationship types are

75

optional, and that cardinality constraints restrict the participation of an entity in a re-

lationship. In addition, we choose the general approach of not requiring entities and

relationships to have corresponding types.

Note that a role is created for each actual role of a relationship type. Thus, for a

relationship that contains two distinct roles for the same entity type, two instances of

the role construct are created and stored for the role list. Therefore, role names and

cardinality constraints can identify a particular role in a relationship type by giving a role

identifier and a relationship-type identifier. We do not require roles to be unique across

relationship types, that is, the same role can appear in multiple role lists. An entity type

can also play the same role in multiple relationship types.

Data-Model 3 (The E-R data-model constructs and constraints)

construct entityType = {hasName->uldString, hasAtts->attSet}

construct attSet = set of attribute

construct attribute = {hasName->uldString, hasDomain->uldValueType}

construct relType = {hasName->uldString, hasRoles->roleList, hasAtts->attSet}

construct roleList = list of role

construct role = {hasType->entityType}

construct roleName = {forType->relType, forRole->role, hasName->uldString}

construct pKey = {forType->entityType, keyAtts->pKeyAttSet}

construct pKeyAttSet = set of attribute

construct weakEntity = {forType->entityType, idRel->relType,

partialKey->weakAttSet}

construct weakAttSet = set of attribute

construct card = {forType->relType, forRole->role, isReq->uldBool,

isMult->uldBool}

construct instance = entity | rel

construct entity = {hasProps->propSet} conf(domain=*,range=*):entityType

construct propSet = set of property

construct property = {hasName->uldString, hasVal->uldValue}

construct rel = {hasProps->propSet, associates->entityList}

conf(domain=*,range=*):relType

construct entityList = list of entity

constraint er-1: (roleList isNonEmpty).
constraint er-2: (entityList isNonEmpty).

76

constraint er-3: (attSet isDistinct).
constraint er-4: (roleList isDistinct).
constraint er-5: (pKeyAttSet isDistinct).
constraint er-6: (weakAttSet isDistinct).
constraint er-7: (propSet isDistinct).
constraint er-8: (entityList isDistinct).

constraint er-9: (hasName keyOf entityType).
constraint er-10: (hasName keyOf attSet).
constraint er-11: (hasName keyOf relType).
constraint er-12: (forRel, forRole keyOf roleName).
constraint er-13: (forType keyOf pKey).
constraint er-14: (hasName keyOf pKeyAttSet).
constraint er-15: (forType keyOf weakEntity).
constraint er-16: (hasName keyOf weakAttSet).
constraint er-17: (forRel, forRole keyOf card).
constraint er-18: (hasName keyOf propSet).

constraint er-19: (attSet always(=) type.hasAtts).
constraint er-20: (roleList always(=) relType.hasRoles).
constraint er-21: (pKeyAttSet always(=) pKey.keyAtts).
constraint er-22: (weakAttSet always(=) weakEntity.partialKey).
constraint er-23: (propSet always(=) instance.hasProps).
constraint er-24: (entityList always(=) rel.associates).
constraint er-25: (attribute always(∈) attSet).
constraint er-26: (role always(∈) roleList).
constraint er-27: (property always(∈) propSet).
constraint er-28: (pKey.keyAtts always!(⊆) pKey.forType.hasAtts).
constraint er-29: (weakEntity.partialKey always!(⊆) weakEntity.forType.hasAtts).
constraint er-30: (roleName.forRole always!(∈) roleName.forType.hasRoles).
constraint er-31: (card.forRole always!(∈) card.forType.hasRoles).

constraint er-32: (Relationship types have unique sets of role names)
Rn1=Rn2 ⇐ c-inst(Rn1, roleName), c-inst(Rn2, roleName), Rn1.forType:R, Rn2.forType:R,

Rn1.hasName:N, Rn2.hasName:N.

constraint er-33: (Role lists have at least two roles)
R1∈Rl, R2∈Rl, R1 $=R2 ⇐ c-inst(Rl, roleList).

77

constraint er-34: (A role list contains unique role ids)
R1 $=R2 ⇐ c-inst(Rl, roleList), R1∈Rl, R2∈Rl.

constraint er-35: (Every entity list has at least two elements)
E1∈El, E2∈El, E1 $=E2 ⇐ c-inst(El, entityList).

constraint er-36: (Entity types have at least one attribute)
A∈As ⇐ c-inst(E, entityType), E.hasAtts:As.

constraint er-37: (Entities have at least one property)
P∈Pl ⇐ c-inst(E, entity), E.hasProps:Pl.

constraint er-38: (Weak entity types do not have primary keys)
¬P.forType:T ⇐ c-inst(T, entityType), c-inst(W, weakEntity), W.forType:T,

c-inst(P, pKey).

constraint er-39: (Non-weak entity types always have primary keys)
c-inst(P, pKey), P.keyFor:T ⇐ c-inst(T, entityType), ¬isWeakEntityType(T).

isWeakEntityType(T) ← c-inst(T, entityType), c-inst(W, weakEntity), W.forType:T.

constraint er-40: (Identifying relationships are binary and connect to weak entity types)
|Rl|=2, L1∈Rl, L1.hasType:E ⇐ c-inst(W, weakEntity), W.forType:E, W.idRel:R,

R.hasRoles:Rl.

constraint er-conf1: (Entities have all attributes of their entity types)
P∈Pl, P.hasName:N, P.hasValue:V, d-inst(V, D) ⇐ c-inst(T, entityType), c-inst(E, entity),

T.hasAtts:Al, A∈Al, A.hasName:N, A.hasDomain:D, E.hasProps:Pl.

constraint er-conf2: (Relationships have all attributes of their relationship types)
P∈Pl, P.hasName:N, P.hasValue:V, d-inst(V, D) ⇐ c-inst(T, relType), d-inst(R, T)

T.hasAtts:Al, A∈Al, A.hasName:N, A.hasDomain:D, R.hasProps:Pl.

constraint er-conf3: (Relationships connect a valid entity for each relationship-type role)
El[I]=E, d-inst(E, Te) ⇐ c-inst(Tr, relType), d-inst(R, T), Tr.hasRoles:Ol, Ol[I]=O,

O.hasType:Te, R.associates:El.

constraint er-conf4: (Primary key constraint)
E1=E2 ⇐ c-inst(E1, entity), c-inst(E2, entity), d-inst(E1, T), d-inst(E2, T),

78

c-inst(pKey, P), P.forType:T, P.keyAtts:Ak, ¬differOnAttribute(E1, E2, Ak).

differOnAttribute(E1, E2, Ak) ← E1.hasProps:Ps1, E2.hasProps:Ps2, A∈Ak, P1∈Ps1,
P2∈Ps2, A.hasName:N, P1.hasName:N, P2.hasName:N, P1.hasVal:V1, P2.hasVal:V2,
V1 $=V2.

constraint er-conf5: (Relationship types have unique instances)
R1=R2 ⇐ c-inst(R1, rel), c-inst(R2, rel), d-inst(R1, T), d-inst(R2, T), T.hasRoles:Rl,

¬differOnRole(R1, R2, Rl).

¬differOnRole(R1, R2, Rl) ← c-inst(Rl, roleList), c-inst(R1, rel), c-inst(R2, rel), Rl[I]=Ol,
R1.associates:El1, R2.associates:El2, El1[I]=E1,
El2[I]=E2, E1 $=E2.

constraint er-conf6: (Weak entities must have an identifying relationship)
d-inst(R, Tr), R.associates:El, El[I]=E ⇐ c-inst(W, weakEntity), W.forType:Te,

d-inst(E, Te), W.idRel:Tr, Tr.hasRoles:Rl, Rl[I]=L, L.hasType:Te.

constraint er-conf7: (Partial keys constraint)
E1=E2 ⇐ c-inst(W, weakEntity), W.forType:Te1, W.idRel:Tr, d-inst(E1, Te1),

d-inst(E2, Te1), Tr.hasRoles:Rl, Rl[I1]=L1, L1.hasType:Te1, Rl[I2]=L2,
L2.hasType:Te2, Te1 $=Te2, d-inst(R1, Tr), d-inst(R2, Tr), R1.associates:El1,
El1[I1]=E1, R2.associates:El2, El2[I1]=E2, El1[I2]=E, El2[I2]=E,
¬differOnPartialAttributes(E1, E2, W).

differOnPartialAttributes(E1, E2,W) ← c-inst(W, weakEntity), c-inst(E1, entity),
c-inst(E2, entity), W.partialKey:As, A∈As, E1.hasProps:Ps1, P1∈Ps1,
E2.hasProps:Ps2, P2∈Ps2, A.hasName:N, P1.hasName:N,P2.hasName:N,
P1.hasVal:V1, P2.hasVal:V2, V1 $=V2.

constraint er-conf8: (Required cardinality constraint)
d-inst(R, Tr), R.associates:El, El[I]=E ⇐ c-inst(Tr, relType), Tr.hasRoles:Rl, Rl[I]=L,

c-inst(C, card), C.forRole:L, C.forType:Tr, C.isReq:true, L.hasType:Te,
c-inst(E, Te).

constraint er-conf9: (Maximum cardinality constraint)
R1=R2 ⇐ c-inst(Tr, relType), Tr.hasRoles:Rl, Rl[I]=L, c-inst(C, card), C.forRole:L,

C.forType:Tr, C.isMult:false, L.hasType:Te, c-inst(E, Te), c-inst(R1, Tr),
c-inst(R2, Tr), R1.associates:EL1, R2.associates:EL2, EL1[I]=E, EL2[I]=E.

79

3.3 Structured Data Models for the Web

In this section, we describe data models for XML and RDF, two standards for exchanging

information over the Web. In Section 3.3.1, we extend the definition of the XML data

model from Chapter 2 by including a full description of the Document Type Definition

(DTD) schema language. In Section 3.3.2, we describe the full RDF data model with RDF

Schema and briefly mention the flexibility of RDF for defining metamodels by allowing

multiple levels of schema.

3.3.1 XML Data Models

The Extensible Markup Language (XML) [22] is a text format for representing and ex-

changing hierarchically structured information. Data in XML consists of elements, at-

tributes, and character-string data. The data model of XML is hierarchical. An XML

document is structured as a tree, where an internal node in the tree is an element, a leaf

node in the tree is either an element or string content (called ‘PCDATA’), and the children

of a node are ordered. An XML document must have exactly one root element. Every

element has a tag name and can contain an optional set of attribute-value pairs.

We give a ULD description for the XML data model below, including a description of

DTDs for defining schemas for XML documents. As shown, the majority of constructs

introduced in the ULD description below are for representing the structure of DTDs—all

but the last ten constructs describe the structure of DTDs.

With a DTD, it is possible to restrict the allowable elements and attributes in (con-

forming) XML documents. An element definition (elemType) in a DTD consists of a

tag name and a structural restriction (contentSpec) on the element’s children (called a

content model). The content model of an element is expressed in a DTD as a regular ex-

pression over element tag names. (Regular expressions are one reason DTDs are complex;

the other reason is a result of the number of subtle restrictions possible for attributes.) In

addition, each element definition in a DTD may also have a set of corresponding attribute

definitions (attDef), which specify an attribute name and a restriction on the allowable

attribute values.

80

An XML document specifies at most one DTD, which is an assertion that the document

conforms to the structure defined by the DTD. Note that an XML document is not required

to specify a DTD. By not providing a DTD, the document is considered un-typed, that

is, the document does not have a specified schema (assuming no other schema language is

used). Thus, the XML data model permits schema-less data.

An XML document is valid with respect to a DTD if the XML document: (1) only

contains elements defined within the DTD, (2) each element only contains attributes

defined in the DTD and the attributes contain valid values, (3) each required attribute

defined in the DTD is present for each corresponding element in the document, and (4) the

children nodes of an element are valid with respect to the corresponding element’s content

model defined in the DTD. Note that an element can be defined in a DTD such that it can

contain any content, in which case the above rules are not considered for that particular

element’s children in a document. Thus, it is possible to mix typed and un-typed data in

an XML document.

In a DTD, a content model is designated as either simple (simpleSpec), mixed

(mixedSpec), or as a regular expression (regExp). There are three kinds of simple con-

tent models: an element is restricted to be empty, that is, it does not contain any children

nodes; an element is restricted to contain only character data; or an element is restricted to

contain any content including elements not specified in the DTD. A mixed content model

allows an element to contain other elements mixed with character data, where the subele-

ments are ordered according to their listing in the content-model specification. And finally,

a regular-expression content model specifies the allowable organization of sub-elements for

an element. Only elements defined in the DTD can occur as direct children of the element

being specified by the regular expression (in contrast to a simple or mixed content model).

A regular expression defines a grammar over elements and consists of operations applied to

elements and sub-expressions. The allowable operations include concatenation expressed

as a list (listRE), union expressed as a choice structure (choiceRE), and multiple forms

of repetition including zero or more (optManyRE), zero or one (optRE), and one or more

(reqManyRE).

Attributes can be constrained in a DTD to be required, implied, or fixed. A required

81

attribute must have a value for each corresponding element in the XML document. An

implied attribute is optional. And a fixed attribute is required and must contain a specific

value (given in the DTD) for each occurrence in the XML document. In addition, the

allowable values of an attribute can be specified in a DTD. An attribute can either contain

a character data value or be restricted to contain a value from an enumeration, a unique

identifier, or a value from an attribute designated as an identifier (called an ‘IDREF’).

We note that not all combinations of constraints and allowable values are possible, for

example, an attribute cannot be defined in a DTD as both fixed and an identifier because

each occurrence of an identifier (attribute) must be unique within an XML document.

We note that there are a number of features of DTDs that we do not consider below

for simplicity, including attribute lists (in particular, IDREFS), name tokens, notations,

entities, and default attributes. Many of these extensions are compiled away by an XML

parser and do not significantly change the structural definition of DTDs. Although not

included, these additional features have a straightforward definition using the ULD.

The definition below (Data-Model 4) defines both the constructs and constraints of the

XML data model with DTDs. The constraints below, for example, for regular expression

matching, define part of a validating parser for XML. That is, if all of the constraints are

satisfied, the XML document is considered a model of the DTD. Constructing a complete

validating parser from the definition below would require additional rules. Namely, we

would need to infer the data-instance (d-inst) links for attributes and elements. However,

these links are trivial to infer because they are based on element-tag and attribute names.

Data-Model 4 (The XML with DTD data-model constructs and constraints)

construct dtd = set of elemType

construct elemType = {hasName->uldString, hasModel->contentSpec,

hasAtts->attDefList}

construct contentSpec = simpleSpec | mixedSpec | regexp

construct simpleSpec = {isPCData->uldBool, isEmpty->uldBool, isAny->uldBool}

construct mixedSpec = list of elemType

construct regExp = listRE | choiceRE | optManyRE | optRE | reqManyRE |

elemRE

construct listRE = emptyRE | fullListRE

82

construct fullListRE = {hasRE->regExp, hasTail->listRE}

construct choiceRE = emptyRE | fullChoiceRE

construct fullChoiceRE = {hasRE->regExp, hasTail->choiceRE}

construct emptyRE = set of uldValue

construct optManyRE = {hasRE->regExp}

construct optRE = {hasRE->regExp}

construct reqManyRE = {hasRE->regExp}

construct elemRE = {hasType->elemType}

construct attDefList = set of attDef

construct attDef = enumAtt | cDataAtt | idAtt | idRefAtt

construct enumAtt = reqEnumAtt | impEnumAtt

construct reqEnumAtt = {hasName->uldString, hasEnum->enumSet}

construct impEnumAtt = {hasName->uldString, hasEnum->enumSet}

construct enumSet = set of cdata

construct cDataAtt = reqCDataAtt | impCDataAtt | fixCDataAtt

construct reqCDataAtt = {hasName->uldString}

construct impCDataAtt = {hasName->uldString}

construct fixCDataAtt = {hasName->uldString, hasFixVal->cdata}

construct idAtt = reqIdAtt | impIdAtt

construct reqIdAtt = {hasName->uldString}

construct impIdAtt = {hasName->uldString}

construct idRefAtt = reqIdRefAtt | impIdRefAtt | fixIdRefAtt

construct reqIdRefAtt = {hasName->uldString}

construct impIdRefAtt = {hasName->uldString}

construct fixIdRefAtt = {hasName->uldString, hasFixVal->cdata}

construct doc = {hasRoot->element} conf(domain=*,range=?):dtd

construct element = {hasTag->uldString, hasAtts->attSet,

hasChildren->content} conf(domain=*,range=?):elemtype

construct attSet = set of attribute

construct attribute = {hasName->uldString, hasVal->cdata}

conf(domain=*,range=?):attDef

construct content = emptyContent | fullContent

construct fullContent = {hasNode->node, hasContent->content}

construct emptyContent = set of uldValue

construct node = pcdata | element

construct cdata = atomic

construct pcdata = atomic

constraint xml-1 (dtd isNonEmpty).

83

constraint xml-2 (mixed isNonEmpty).
constraint xml-3 (enumSet isNonEmpty).

constraint xml-4 (hasName keyOf dtd).
constraint xml-5 (hasName keyOf elemType).
constraint xml-6 (hasName keyOf mixed).
constraint xml-7 (hasRE, hasListRE keyOf fullListRE).
constraint xml-8 (hasRE, hasChoiceRE keyOf fullChoiceRE).
constraint xml-9 (hasRE keyOf optManyRE).
constraint xml-10 (hasRE keyOf optRE).
constraint xml-11 (hasRE keyOf reqManyRE).
constraint xml-12 (hasType keyOf elemRE).
constraint xml-13 (hasName keyOf attDefList).
constraint xml-14 (hasName keyOf attSet).
constraint xml-15 (hasNode, hasContent keyOf fullContent).

constraint xml-16 (attDefList always(=) elemType.hasAtts).
constraint xml-17 (enumSet always(=) enumAtt.hasEnum).
constraint xml-18 (attSet always(=) element.hasAtts).
constraint xml-19 (emptyRE always(=) regExp.hasTail).
constraint xml-20 (emptyContent always(=) fullContent.hasContent).
constraint xml-21 (elemType always(∈) dtd).
constraint xml-22 (attDef always(∈) attDefList).
constraint xml-23 (attribute always(∈) attSet).
constraint xml-24 (pcdata always(∈) content).

constraint xml-25 (If an element is not a root, it is a child of another element)
c-inst(C, fullContent), C.hasNode:E ⇐ c-inst(D, doc), c-inst(E, element)

¬D.hasRoot:E.

constraint xml-26 (If an element is not a child of another element, it is a root)
c-inst(D, doc), D.hasRoot:E ⇐ c-inst(E, element), ¬childElement(E).

childElement(E) ← c-inst(E, element), c-inst(C, fullContent), C.hasNode:E.

constraint xml-27 (Only one empty regular expression exists)
RE1=RE2 ⇐ c-inst(RE1, emptyRE), c-inst(RE2, emptyRE).

constraint xml-28 (The empty regular expression only occurs in the tail of a list or choice)

84

¬RE2.hasRE:RE1 ⇐ c-inst(RE1, emptyRE), c-inst(RE2, regExp).

constraint xml-29 (The empty regular expression has no members)
¬V∈RE ⇐ c-inst(RE, emptyRE), c-inst(V, uldValue).

constraint xml-30 (An empty content element has no members)
¬V∈C ⇐ c-inst(C, emptyContent), c-inst(V, uldValue).

constraint xml-31 (Regular expression lists have at least two items)
RE1.hasTail:RE2, c-inst(RE2, fullListRE) ⇐ c-inst(RE1, fullListRE),

¬nestedListRE(RE1).

nestedListRE(RE1) ← c-inst(RE1, fullListRE), c-inst(RE2, fullListRE),
RE2.hasTail:RE1.

constraint xml-32 (Regular expression choices have at least two items)
RE1.hasTail:RE2, c-inst(RE2, fullChoiceRE) ⇐ c-inst(RE1, fullChoiceRE),

¬nestedChoiceRE(RE1).

nestedChoiceRE(RE1) ← c-inst(RE1, fullChoiceRE), c-inst(RE2, fullChoiceRE),
RE2.hasTail:RE1.

constraint xml-33 (Choice regular expressions contain unique items)
RE$=RE′ ⇐ c-inst(RE1, fullChoiceRE), RE1.hasRE:RE, RE1.hasTail:RE2,

elementInChoiceRE(RE′, RE2).

elementInChoice(RE′, RE2) ← RE2.hasRE:RE′.
elementInChoice(RE′, RE3) ← RE3.hasTail:RE2, elementInChoice(RE′, RE2).

constraint xml-34 (Enumeration sets must have at least two items)
CD1∈ES, CD2∈ES, CD1 $=CD2 ⇐ c-inst(ES, enumSet).

constraint xml-35 (Simple content is either pcdata, empty, or any)
S.isAny:true ⇐ c-inst(S, simpleSpec), ¬S.isPCData:true, ¬S.isEmpty:true.

constraint xml-36 (Simple content is either pcdata, empty, or any)
S.isEmpty:true ⇐ c-inst(S, simpleSpec), ¬S.isPCData:true, ¬S.isAny:true.

constraint xml-37 (Simple content is either pcdata, empty, or any)
S.isPCData:true ⇐ c-inst(S, simpleSpec), ¬S.isEmpty:true, ¬S.isAny:true.

85

constraint xml-38 (One DTD per configuration)
D1=D2 ⇐ c-inst(D1, dtd), c-inst(D2, dtd).

constraint xml-39 (One document per configuration)
D1=D2 ⇐ c-inst(D1, doc), c-inst(D2, doc).

constraint xml-40 (An element occurs only once in a document)
E1=E2 ⇐ c-inst(E, element), E1.hasChildren:C1, E2.hasChildren:C2, E∈C1, E∈C2.

constraint xml-41 (An element occurs only once in a document)
¬E∈C ⇐ c-inst(E, element), c-inst(D, doc), D.hasRoot:E, c-inst(E′, element),

E′.hasChildren:C.

constraint xml-42 (An element occurs only once in a document)
¬D.hasRoot:E ⇐ c-inst(E, element), c-inst(E′, element), E′.hasChildren:C, E∈C,

c-inst(D, doc).

constraint xml-43 (An attribute occurs only once in a document)
E1=E2 ⇐ c-inst(A, attribute), c-inst(E1, element), c-inst(E2, element), E1.hasAtts:AS1,

E2.hasAtts:AS2, A∈AS1, A∈AS2.

constraint xml-44 (Every configuration with an element has a document)
c-inst(D, doc) ⇐ c-inst(E, element).

constraint xml-conf1 (If an element has an element type, doc is an instance of the dtd)
c-inst(TD, dtd), d-inst(D, TD) ⇐ c-inst(E, element), d-inst(E, TE), c-inst(D, doc).

constraint xml-conf2 (If an attribute has an element type, doc is an instance of the dtd)
c-inst(TD, dtd), d-inst(D, TD) ⇐ c-inst(A, attribute), d-inst(A, TA), c-inst(D, doc).

constraint xml-conf3 (Attribute instances)
NA=NT ⇐ c-inst(A, attribute), d-inst(A, T), A.hasName=NA, T.hasName=NT .

constraint xml-conf4 (Enumerated attribute instances)
VA∈ES ⇐ c-inst(A, attribute), d-inst(A, T), c-inst(T, enumAtt), A.hasVal=VA,

T.hasEnum=ES.

constraint xml-conf5 (CData fixed attribute instances)

86

VA=VT ⇐ c-inst(A, attribute), d-inst(A, T), c-inst(T, fixCDataAtt), A.hasVal=VA,
T.hasFixVal=VT .

constraint xml-conf6 (ID attribute instances)
A1=A2 ⇐ c-inst(A1, attribute), c-inst(A2, attribute) d-inst(A1, T), d-inst(A2, T),

c-inst(T, idAtt), A1.hasVal=V, A2.hasVal=V.

constraint xml-conf7 (IDRef attribute instances)
c-inst(A2, attribute), d-inst(A2, idAtt), A2.hasVal:V ⇐ c-inst(A1, attribute), d-inst(A1, T),

c-inst(T, idRefAtt), A1.hasVal=V.

constraint xml-conf8 (IDRef fixed attribute definitions)
VA=VT ⇐ c-inst(A, attribute), d-inst(A, T), c-inst(T, fixIdRefAtt), A.hasVal=VA,

T.hasFixVal=VT .

constraint xml-conf9 (Element instances)
NE=NT ⇐ c-inst(E, element), d-inst(E, T), E.hasTag:NE , T.hasName:NT .

constraint xml-conf10 (Elements must have all required element type attributes)
E.hasAtts:AS, AE∈AS, d-inst(AE , AT) ⇐ c-inst(E, element), d-inst(E, T), T.hasAtts:AL,

AT∈AL, requiredAttDef(AT).

requiredAttDef(AT) ← c-inst(AT , reqEnumAtt).
requiredAttDef(AT) ← c-inst(AT , reqCDataAtt).
requiredAttDef(AT) ← c-inst(AT , reqIdAtt).
requiredAttDef(AT) ← c-inst(AT , reqIdRefAtt).

constraint xml-conf11 (Elements may only have element type attributes)
AT∈AL, AT .hasName:N ⇐ c-inst(E, element), d-inst(E, T), T.hasAtts:AL, E.hasAtts:AS,

AE∈AS, AE .hasName:N.

constraint xml-conf12 (Simple specification)
|C|=0 ⇐ c-inst(E, element), d-inst(E, T), E.hasChildren:C, T.hasModel:M,

c-inst(M, simpleSpec), M.isEmpty:true

constraint xml-conf13 (PCData specification)
V1=V2, c-inst(V1, pcdata) ⇐ c-inst(E, element), d-inst(E, T), E.hasChildren:C,

T.hasModel:M, c-inst(M, simpleSpec), M.isPCData:true, V1∈C, V2∈C.

87

constraint xml-conf14 (Mixed specification)
d-inst(V, T), T∈M ⇐ c-inst(E, element), d-inst(E, T), E.hasChildren:C, T.hasModel:M,

c-inst(M, mixedSpec), V∈C, ¬c-inst(V, pcdata).

constraint xml-conf15 (Elements must have the same tagname as the element type)
E.hasTag:N, T.hasName:N ⇐ c-inst(E, element), d-inst(E, T).

constraint xml-conf16 (Regular expression specifications)
¬d-inst(E, T) ⇐ c-inst(E, element), c-inst(T, elemType), E.hasChildren:C, T.hasModel:M,

¬regExpFor(M, C).

regExpFor(M, C) ← c-inst(M, regExp), c-inst(C, content), regExpFor(M, C, C′),
c-inst(C′, emptyContent).

regExpFor(M, C, C) ← c-inst(M, emptyRE), c-inst(C, emptyContent).

regExpFor(M, C, C′) ← c-inst(M, elemRE), c-inst(C, fullContent), M.hasType:T,
C.hasNode:E, d-inst(E, T), C.hasContent:C′.

regExpFor(M, C, C′) ← c-inst(M, fullChoiceRE), c-inst(C, content), M.hasRE:M′,
regExpFor(M′, C, C′).

regExpFor(M, C, C′) ← c-inst(M, fullChoiceRE), c-inst(C, content), M.hasTail:M′,
regExpFor(M′, C).

regExpFor(M, C, C′′) ← c-inst(M, fullListRE), c-inst(C, content), M.hasRE:M′,
regExpFor(M′, C, C′), M.hasTail:M′′, regExpFor(M, C′, C′′).

regExpFor(M, C, C) ← c-inst(M, optManyRE), c-inst(C, content).
regExpFor(M, C, C′) ← c-inst(M, optManyRE), c-inst(C, content), M.hasRE:M′,

regExpFor(M′, C, C′).
regExpFor(M, C, C′′) ← c-inst(M, optManyRE), c-inst(C, content), M.hasRE:M′,

regExpFor(M′, C, C′), regExpFor(M, C′, C′′).

regExpFor(M, C, C) ← c-inst(M, optRE), c-inst(C, content).
regExpFor(M, C, C′) ← c-inst(M, optRE), c-inst(C, content), M.hasRE:M′,

regExpFor(M′, C, C′).

regExpFor(M, C, C′) ← c-inst(M, reqManyRE), c-inst(C, content), M.hasRE:M′,
regExpFor(M′, C, C′).

regExpFor(M, C, C′′) ← c-inst(M, reqManyRE), c-inst(C, content), M.hasRE:M′,
regExpFor(M′, C, C′), regExpFor(M, C′, C′′).

constraint xml-conf17 (Document instances)

88

d-inst(E, TE), TE∈TD ⇐ c-inst(D, doc), D.hasRoot:E, d-inst(D, TD).

3.3.2 RDF Data Models

The Resource Description Framework (RDF) is a graph-based data model for exchanging

information over the Web. Information in RDF can be represented in a number of formats,

the most widely used is XML. The RDF data model serves as the foundation of the

Semantic-Web initiative [11], which aims at creating an infrastructure to enable better

search, integration, and discovery of Web-based content by adding semantic, machine

processable information to existing Web resources. In the Semantic Web, RDF is seen as

a language for exchanging semantic information among agents and other software systems.

The data model for RDF is based on semantic networks [53, 82] in which information is

represented using directed graphs with labeled, binary edges and labeled nodes. In RDF,

nodes are called resources and edges are called properties. A resource is denoted with a

Uniform Resource Indicator (URI), which is a general form of a URL (therefore, a node in

an RDF graph can denote a Web-page). Properties in RDF are also represented as URIs.

A graph in RDF is represented by a set of triples, which take the form (property, subject,

object), where the subject and object are resources, and the property connects the subject

(as the domain of the property) to the object (as the range property).

Every assertion in an RDF document is made using triples. To create complex struc-

tures such as collections, RDF defines special properties and resources. For example, to

represent list data structures, RDF uses the resource rdf:Seq (where rdf is a namespace

and Seq is a fragment identifier) and properties rdf:type and rdf: 1, rdf: 2, etc. A

resource r is defined as a list, called a sequence in RDF, by asserting the triple (rdf:type,

r, rdf:Seq), which is read as “the type of r is a sequence” or equivalently as “r is an

instance of a sequence.” Elements are added to a sequence using an assertion (rdf: 1,

r, r′), which is read as “the first item of r is r′.” In addition, RDF has a set of special

properties for making assertions about triples (called reification), allowing complex hyper-

graph structures to be defined. Semantic network representations, such as RDF, provide

highly extensible systems for modeling information at the cost of clarity and formalism

89

[82]. In particular, it is easy to build new complex structures from triples by defining

special resources and properties. However, doing so often leads to confusion by those who

must use the structures because certain properties and resources have a special status or

are introduced as a convenience for modeling without being formally defined.

Schema languages for RDF are built using the flexibility offered by RDF. In partic-

ular, RDF Schema (RDFS), which is the base schema language for RDF, defines special

resources and properties for classifying data. RDFS serves as a very simple description

logic [7] that permits the definition of classes and their roles, with universal role restric-

tion. In RDFS, the resource rdfs:Class denotes the concept of a class and the resource

rdfs:Property denotes the concept of a property definition. A property definition in-

cludes a domain (through the special property rdfs:domain) and a range (through the

special property rdfs:range) restriction. A particular class c is defined by asserting the

triple (rdf:type, c, rdfs:Class). Objects are created in a similar way by asserting a

triple (rdf:type, o, c), which is read as “the object o is an instance of class c.” A

particular property definition (that is, an instance of rdfs:Property) can be used as a

property in a triple. Finally, RDFS permits subclass (rdfs:subClassOf) and subproperty

(rdfs:subPropertyOf) definitions. Recall that a property specifies a domain and a range

class, where a triple that uses the property connects an instance of the domain class to

an instance of the range class. A property p1 can be a subproperty of another property

p2 if the domain class of p1 is a subclass of the domain class of p2, and the range class of

p1 is a subclass of the range class of p2. Thus, a subproperty can restrict a property by

requiring a more restrictive domain and range class.

We provide a description of the RDF with RDFS data model below (Data-Model 5).

Instead of describing RDF as a standard semantic network representation, we use the ULD

to promote RDFS class and property definitions to special constructs in the data model.

This approach is closer to the approach of description logics, where schema and data reside

at separate levels. Thus, in our representation below, classes and properties are explicitly

defined, and can be independently accessed from the data they classify. Note, however,

that our representation does not limit the expressibility of RDF with RDFS, because even

though a class and a property are separate constructs, they are still considered resources,

90

and thus can still participate in additional assertions. The conformance definitions below

were taken from both the RDF Model Theory [41] and the RDF Vocabulary Language [23].

We assume that an RDF processor computes the transitive closure of the subclass and

subproperty relationships prior to the creation of the corresponding ULD configuration.

Note however that the constraints themselves could be used to infer these additional

relationships.

Finally, it is possible to define multiple levels of schema in RDF using the rdf:type

property. In particular, the rdf:type property can be applied without bound and with-

out violating conformance constraints. One use of creating multiple levels of schema is for

defining metamodels (also called metaclasses or metaobjects). A metamodel defines an

abstract schema for creating conceptual models. A number of systems support metamod-

eling, such as Telos [59, 43], UML [15, 42], CLOS [44], MOF [61], and Protege [60]. In

RDFS, a metamodel is defined as a set of classes and properties with a specific intended

semantics. Taking an example from Telos [59], we give a metamodel below using RDF(S)

triples for defining conceptual models about document systems.

(rdf:type, DocumentClass, rdfs:Class)

(rdf:type, AgentClass, rdfs:Class)

(rdf:type, SimpleClass, rdfs:Class)

(rdf:type, source, rdfs:Property)

(rdfs:domain, source, DocumentClass)

(rdfs:range, source, AgentClass)

(rdfs:type, content, rdfs:Property)

(rdfs:domain, content, DocumentClass)

(rdfs:range, content, SimpleClass)

In this example, DocumentClass represents a metaclass for classes concerning documents,

for example, instances of DocumentClass could include the classes JournalPaper and Con-

ferencePaper. An AgentClass is a metaclass grouping those classes that serve as the

source of a DocumentClass. For example, a Person class might serve as the author of a

JournalPaper, where author is a particular source property. The following triples define

the JournalPaper and Person classes, along with a particular paper, using RDF(S) (the

91

example is again taken from Telos).

(rdf:type, JournalPaper, DocumentClass)

(rdf:type, Person, AgentClass)

(rdf:type, rdfs:Literal, SimpleClass)

(rdf:type, author, source)

(rdfs:domain, author, JournalPaper)

(rdfs:range, author, Person)

(rdf:type, title, content)

(rdfs:domain, title, JournalPaper)

(rdfs:range, title, rdfs:Literal)

(rdf:type, Martian, JournalPaper)

(rdf:type, Stanley, Person)

(rdf:type, LaSalle, Person)

(rdf:type, Wang, Person)

(author, Martian, Stanley)

(author, Martian, LaSalle)

(author, Martian, Wang)

(title, Martian, ‘The MARTIAN system’)

Note that multiple levels of schema are used in this example. For example, Martian is an

instance of JournalPaper, which is an instance of DocumentClass (which is an instance of

rdfs:Class).

Data-Model 5 (The RDF(S) data-model constructs and constraints)

construct resource = rdfType | simpleRes | complexRes

construct rdfType = class | property

construct class = {hasURI->uldURI, hasLabel->uldString}

conf(domain=*,range=*):class

construct property = {hasURI->uldURI, hasDomain->class, hasRange->class}

conf(domain=*,range=*):rdfType

construct subClass = {hasSub->class, hasSuper->class}

construct subProp = {hasSub->prop, hasSuper->prop}

construct simpleRes = {hasURI->uldURI} conf(domain=*,range=*):class

construct complexRes = {hasURI->uldURI, hasVal->complexVal}

92

construct complexVal = triple | rdfBag | rdfSeq | rdfAlt

construct triple = {hasPred->resource, hasSubj->resource, hasObj->objectVal}

construct objectVal = resource | literal

construct rdfBag = bag of object

construct rdfSeq = list of object

construct rdfAlt = set of object

construct literal = atomic conf(domain:*,range:*):class

constraint rdf-1: (hasURI keyOf resource)
constraint rdf-2: (hasLabel keyOf class)
constraint rdf-3: (hasSuper, hasSub keyOf subClass)
constraint rdf-4: (hasSuper, hasSub keyOf subProp)
constraint rdf-5: (hasPred, hasSubj, hasObj keyOf triple)
constraint rdf-6: (rdfBag isUnique)
constraint rdf-7: (rdfSeq isUnique)
constraint rdf-8: (rdfAlt isUnique)
constraint rdf-9: (rdfAlt isNonEmpty)
constraint rdf-10: (literal always(=) triple.hasObj)

constraint rdf-11: (Subclass relationship is transitive)
c-inst(S3, subClass), S3.hasSub:C1, S3.hasSuper:C3 ⇐ c-inst(S1, subClass),

c-inst(S2, subClass), S1.hasSub:C1, S1.hasSuper:C2, S2.hasSub:C2, S2.hasSuper:C3.

constraint rdf-12: (Subproperty relationship is transitive)
c-inst(S3, subProp), S3.hasSub:P1, S3.hasSuper:P3 ⇐ c-inst(S1, subProp),

c-inst(S2, subProp), S1.hasSub:P1, S1.hasSuper:P2, S2.hasSub:P2, S2.hasSuper:P3.

constraint rdf-13: (Property domains must be subclasses of super property domains)
c-inst(Sc, subClass), Sc.hasSub:C1, Sc.hasSuper:C2 ⇐ c-inst(Sp, subProp), Sp.hasSub:P1,

Sp.hasSuper:P2, P1.hasDomain:C1, P2.hasDomain:C2, C1 $=C2.

constraint rdf-14: (Property ranges must be subclasses of super property ranges)
c-inst(Sc, subClass), Sc.hasSub:C1, Sc.hasSuper:C2 ⇐ c-inst(Sp, subProp), Sp.hasSub:P1,

Sp.hasSuper:P2, P1.hasRange:C1, P2.hasRange:C2, C1 $=C2.

constraint rdf-conf1: (Classes with literal instances only have literal instances)
c-inst(L2, literal) ⇐ c-inst(C, class), d-inst(L1, C), d-inst(L2, C), c-inst(L1, literal).

constraint rdf-conf2: (An instance of a class is also an instance of a super class)

93

d-inst(X, C2) ⇐ d-inst(X, C1), c-inst(C1, class), c-inst(S, subClass), S.hasSub:C1,
S.hasSuper:C2.

constraint rdf-conf3: (An instance of a property is also an instance of a super property)
d-inst(X, P2) ⇐ d-inst(X, P1), c-inst(P1, property), c-inst(S, subProp), S.hasSub:P1,

S.hasSuper:P2.

constraint rdf-conf4: (Triples with constrained properties have conforming subjects and objects)
d-inst(S, Cd), d-inst(O, Cr) ⇐ c-inst(T, triple), T.hasPred:P, c-inst(P, property),

P.hasDomain:Cd, T.hasSubj:S, P.hasRange:Cr, T.hasObj:O.

constraint rdf-conf5: (Triples are entailed by super properties)
c-inst(T2, triple), T2.hasPred:P2, T2.hasSubj:S, T2.hasObj:O ⇐ c-inst(T1, triple),

T1.hasPred=P1, c-inst(S, subProp), S.hasSub:P1, S.hasSuper:P2, T1.hasSubj:S,
T1.hasObj:O.

constraint rdf-conf6: (Property instances have conforming domain and range values)
d-inst(Pd1, Pd2), d-inst(Pr1, Pr2) ⇐ d-inst(P1, P2), c-inst(P2, property),

P1.hasDomain:Pd1, P1.hasRange:Pr1. P2.hasDomain:Pd2, P2.hasRange:Pr2.

3.4 Additional Data Models

This section describes two additional data models for representing structured information.

In Section 3.4.1, we describe the Topic Map data model, which like RDF, permits multiple

levels of schema and is used to represent information on the Web. In Section 3.4.3, we

describe a structured hypertext data model called VIKI, which explicitly permits (and

encourages) un-typed and partially typed data. The term emergent schema is used with

VIKI to describe its operational approach of allowing users to start with un-typed data,

and as natural types “emerge,” types can be assigned to existing information. Both

Topic Maps and VIKI were developed to make it easy for users to navigate unstructured

information. A Topic Map provides structures and typing capabilities for navigating

information stored externally, for example, in unstructured Web-pages or other documents.

VIKI provides structures for organizing arbitrary text-based content that would reside

externally, for example, in a Topic Map.

94

3.4.1 Topic-Map Data Models

Compared to RDF, the goal of the Topic-Map data model [13, 66] is to enable people

(as opposed to software agents) to more easily locate and browse digital information.

The Topic-Map data model contains structures similar to those found in traditional book

indexes, that is, a possibly hierarchical list of subjects, each with one or more references

to page numbers, see-also notes, and so on. Due to this similarity, Topic Maps are often

referred to as “back-of-the-book” indexes [72] for digital resources. A Topic Map consists

of a set of topics, occurrences, associations that connect topics, and scopes.

A topic is a concrete entity that serves to reify (or represent) exactly one abstract

subject, for example, a subject may represent a concept in an ontology [13]. Topics con-

tain zero or more base names and occurrences, and can be instances of other topics. A

base name provides a convenient textual representation for a topic. An occurrence re-

lates a resource with a topic, where a resource is either external (such as a Web-page),

and denoted with a URI, or internal, and represented as a character string. An occur-

rence is an assertion stating that the topic is relevant to the resource. Finally, the topic

instance-of relationship allows topics to be arranged into hierarchies. Both occurrences

and associations (see below) can also be typed using topics, however, unlike topics they

can have at most one topic type. Figure 3.1 shows a simple Topic Map consisting of a

binary association between two topics m1 and a1, where m1 has two occurrences and a2

has one occurrence. The remaining topics in Figure 3.1 are used as types.

A topic is said to play a role in an association. Each role in an association can be

distinguished by an optional role name (similar to the E-R data model). A role name is

assigned using a topic, that is, roles are filled by topics and are distinguished (named) by

topics.

A scope is defined in a Topic Map as a special topic for labeling topic names, occur-

rences, and association roles. A scope establishes a context for applying the labeled item.

For example, an English scope could be used to label the base names in the Topic Map

that are in English. The scope could then be used whenever a user wishes to browse only

95

Film

Film-Actor

Mentioned

m1

Named

Thriller

Named

Actor

a1

Actor-Role

occurrence

Film-Role

"The Usual Suspects" "Kevin Spacey"

subtopic
association
role
topic instance-of

topic base name

Web-Page
...
Five villians in New York
...

Figure 3.1: An example of a Topic Map represented graphically.

the English portion of the Topic Map. The default scope for a topic map is the uncon-

strained scope. Unless an explicit scope is given, the unconstrained scope is assumed. The

topic naming constraint asserts that any two topics in the same scope with an identical

base name implicitly refer to the same subject, and should be combined into a single topic

(by a topic map processor).

The Topic Map data model is an ISO standard [13], and there are a number of versions

of the model including an XML interchange format (XTM) [66]. In XTM, subjects and

topics are decoupled to simplify the specification of a Topic Map. We we describe a version

of the XTM data model below (Data-Model 6). We assume each configuration represents

a Topic Map. For convenience, we do not include the additional subject information

provided by the full XTM syntax. We note that, while topics and subjects are still

considered one-to-one in XTM, by making subjects explicit, it is possible to define a topic

in multiple places within a Topic Map and then re-combine the definition into a single

topic by an XTM processor. We assume the configuration is constructed after an XTM

processor has parsed the Topic Map, and that the parser computes the transitive closure

of the subtopic relationship.

96

Topic-Map data models place few restrictions on class-instance relationships, as re-

flected in the conformance definitions below. The main restrictions concern transitivity,

namely, the class-instance relationship is not transitive, whereas the subtype-supertype

relationship is. We include these assumptions below. There are some recent proposals

for Topic-Map constraint languages including AsTMa [9] and Topic-Map templates [65]

(which are themselves Topic Maps). In practice, if constraints are required in an applica-

tion, they are currently expressed using conventions introduced by a top-level set of topics

that all other topics are assumed to be instances of.

Data-Model 6 (The XTM data-model constructs and constraints)

construct topic = {hasId->uldString, hasBNames->baseNames,

hasOccurs->occurBag} conf(domain=*,range=*):topic

construct subTopicOf = {hasSubTopic->topic, hasSuperTopic->topic}

construct baseNames = set of uldString

construct occurBag = bag of occurrence

construct occurrence = {hasValue->occurRes} conf(domain=*,range=?):topic

construct occurRes = uldString | uldURI

construct association = list of assocMember conf(domain=*,range=?):topic

construct assocMember = {forAssoc->association, hasTopic->topic}

construct memberRole = {forMember->assocMember, hasRole->topic}

construct bNameScope = {forTopic->topic, forBName->uldString, hasScope->topic}

construct occurScope = {forTopic->topic, forOccur->occurrence, hasScope->topic}

construct assocScope = {forAssoc->association, forMember->assocMember,

hasScope->topic}

constraint xtm-1: (hasId keyOf topic)
constraint xtm-2: (hasSubTopic, hasSuperTopic keyOf subTopicOf)
constraint xtm-3: (hasValue keyOf occurrence)
constraint xtm-4: (forMember, hasRole keyOf memberRole)
constraint xtm-5: (forTopic, forBName, hasScope keyOf bNameScope)
constraint xtm-6: (forTopic, forOccur, hasScope keyOf occurScope)
constraint xtm-7: (forAssoc, forMember, hasScope keyOf assocScope)

constraint xtm-8: (baseNames always(=) topic.hasBNames)
constraint xtm-9: (occurBag always(=) topic.hasOccurs)
constraint xtm-10: (occurence always(∈) occurBag)
constraint xtm-11: (assocMember always!(∈) assocMember.forAssoc)

97

constraint xtm-12: (bNameScope.forBName always!(∈) bNameScope.forTopic.hasBNames)
constraint xtm-13: (occurScope.forOccur always!(∈) occurScope.forTopic.hasOccurs)
constraint xtm-14: (assocScope.forMember always!(∈) assocScope.forAssoc)

constraint xtm-15: (baseNames isUnique)
constraint xtm-16: (association isNonEmpty)

constraint xtm-17: (Topic naming constraint: topics have disjoint base names in a scope)
T1=T2 ⇐ c-inst(S1,bNameScope), c-inst(S2,bNameScope), S1.hasScope:T, S2.hasScope:T,

S1.forTopic:T1, S2.forTopic:T2, S1.forBName:B, S2.forBName:B.

constraint xtm-18: (An association member is only in its corresponding association)
¬M∈A2 ⇐ c-inst(M,assocMember), M.forAssoc:A1, c-inst(A2,association), A1 $=A2.

constraint xtm-19: (The subtopic relationship is transitive)
c-inst(S3,subTopicOf), S3.hasSubTopic:T1, S3.hasSuperTopic:T3 ⇐ c-inst(S1,subTopicOf),

c-inst(S2,subTopicOf), S1.hasSubTopic:T1, S1.hasSuperTopic:T2, S2.hasSubTopic:T2,
S2.hasSuperTopic:T3.

constraint xtm-conf1: (Instances of a topic are also instances of the super topics)
d-inst(T,T2) ⇐ d-inst(T,T1), c-inst(S,subTopicOf), S.hasSubTopic:T1, S.hasSuperTopic:T2.

3.4.2 The VIKI Data Model

The VIKI system [55, 76] is designed as a tool for creating and navigating hypertext

documents. Broadly speaking, a hypertext document consists of text-based information

organized for navigation. Most hypertext data models consist of nodes and links, where a

node contains text and a link connects two or more nodes. For example, the World-Wide

Web is considered a distributed hypertext. The data model in VIKI uses object, ordered

collection, and composite primitive structures for representing hypertext documents. An

object consists of zero or more slots, which are attribute-value pairs. All textual infor-

mation is stored in object slots. Lists can be nested and can contain objects. And a

composite, which is similar to a tuple, groups two or more objects or lists. In VIKI, a user

constructs a hypertext by creating basic structures (objects, collections, and composites),

by arranging the structures on the screen, and by defining visual characteristics for each

98

structure. For example, a user can create an object in VIKI, choose a shape and color for

the object, and place it in a specific position on the screen.

Each basic structure in VIKI may have multiple associated types. For example, an

object type can consist of a set of slot names, where a slot name is similar to an attribute

name. Objects can contain any number of distinct slots, which consist of a name and a

value for the slot. If for a particular object type, an object has a slot for every slot name

defined in the type, the object can be assigned the object type. A collection type simply

serves as a label, thus, a collection can be assigned any available collection type. A com-

posite type consists of two or more component types (either object or collection types).

A composite type, however, is strict. Composite types can only be used to type compos-

ite items with identical structure as that prescribed by the type. Namely, a composite

structure conforms to a type if it has exactly one subelement for each component type.

A type can define visual properties including a shape and a default color for instances.

The bottom of Figure 3.2 shows a simple hypertext represented in the VIKI data model.

The hypertext includes a composite containing an object and two collections, where each

collection contains sub-objects. The top of Figure 3.2 gives a type description for the

hypertext.

In VIKI, data structures are decoupled from their physical representation. For exam-

ple, the same object can be represented multiple times on the screen and each represen-

tation can have a distinct set of physical properties. In addition, VIKI does not require

the visual properties of basic structures to match the visual properties of their types.

VIKI allows users to explicitly type a particular structure defined in the hypertext.

In addition, VIKI offers typing and structuring suggestions. For example, VIKI notifies

the user when an item matches a type definition. VIKI also tries to recognize implied

structure by suggesting collection and composite structures based on repeating patterns

of structures, visual properties, and the proximity of items (via a spatial parser). For

example, if objects are placed relatively close together and have similar characteristics

(similar physical properties or attributes), then VIKI will suggest a collection for grouping

the items.

We describe the VIKI data model constructs and constraints below. We do not include

99

text: After a waterfront ...
role: Roger "Verbal" Kint
name: Kevin Spacey

has type

has type

has type

has type

Slots: film, genre
Object Type

Awards Collection TypeActor Collection Type

Film Composite Type

genre: Thriller/Mystery
film: The Usual Suspects

category: Best Actor Supporting ...
award: Oscar
year: 1996

text: Least pleased is ...
role: Dean Keaton
name: Gabriel Byrne

Awards CollectionActor Collection

Film Composite

Figure 3.2: An example of a hypertext and its type definition in VIKI.

the visual properties of structures and types (such as font, color, border width, etc.), but

instead focus on the data-specific items. (We note that adding visual properties does not

fundamentally change the conformance definitions or constructs defined below.) VIKI

is an interesting data model to study because it is a mix between object-oriented data

models (with objects and collections) and semi-structured data models (such as XML),

that allows untyped, partially typed, and fully typed data.

Data-Model 7 (The VIKI data-model constructs and constraints)

construct objType = {hasName->uldString, hasSlotDefs->slotDefSet}

construct slotDefSet = set of slotDef

construct slotDef = {hasName->uldString}

construct collType = {hasName->uldString}

construct compType = {hasName->uldString, hasCompDef->compContDef}

construct compContDef = list of baseType

construct baseType = objType | collType

construct object = set of objContent conf(domain=*,range=*):objType

construct objContent = uldString | slot

100

construct slot = {hasName->uldString, hasText->uldString}

construct collection = {hasName->uldString, hasContent->collContent}

conf(domain=*,range=*):collType

construct collContent = list of baseItem

construct baseItem = object | collection

construct composite = list of baseItem conf(domain=*,range=*):compType

constraint viki-1: (hasName keyOf objType)
constraint viki-2: (hasName keyOf slotDef)
constraint viki-3: (hasName keyOf collType)
constraint viki-4: (hasName keyOf compType)
constraint viki-5: (hasName, hasText keyOf slot)
constraint viki-6: (hasName keyOf object)
constraint viki-7: (hasName, hasContent keyOf collection)

constraint viki-8: (slotDefSet always(=) objType.hasSlotDefs)
constraint viki-9: (slotDef always(∈) slotDefSet)
constraint viki-10: (compContDef always(=) compType.hasDef)
constraint viki-11: (slot always(∈) object)
constraint viki-12: (collContent always(=) collection.hasContent)

constraint viki-13: (compContDef isUnique)
constraint viki-14: (object isUnique)
constraint viki-15: (collContent isUnique)
constraint viki-16: (composite isUnique)
constraint viki-17: (compContDef isNonEmpty)
constraint viki-18: (composite isNonEmpty)

constraint viki-19: (Collections are acyclic)
C1 $=C2 ⇐ c-inst(C1,collection), unnestCollectionContentOf(C1,C2).

unnestCollectionContentOf(C1,C2) ← c-inst(C1,collection), C1.hasContent:C2,
c-inst(C2,collection).

unnestCollectionContentOf(C1,C3) ← c-inst(C1,collection), C1.hasContent:C2,
c-inst(C2,collection), unnestCollectionContentOf(C2,C3).

constraint viki-20: (Composites have at least two items)
B1∈C, B2∈C, B1 $=B2 ⇐ c-inst(C,composite).

constraint viki-21: (Composite types have at least two component types)

101

T1∈D, T2∈D, T1 $=T2 ⇐ c-inst(T,compType), T.hasDef:D.

constraint viki-conf1: (Objects have all of their object-type attributes)
So∈O, c-inst(So,slot), SO.hasName:N ⇐ d-inst(O,T), c-inst(T,objType),

O.hasSlotDefs:D, St∈D, St.hasName:N.

constraint viki-conf2: (Composites have the same number of items as their composite types)
|C|=L ⇐ d-inst(C,T), c-inst(T,compType), T.hasCompDef:D, |D|=L.

constraint viki-conf3: (Composite members conform to composite-type members)
C[I]=B, d-inst(B,T′) ⇐ d-inst(C,T), c-inst(T,compType), T.hasCompDef:D, D[I]=T′.

3.5 Properties of Conformance

This section introduces a number of properties for describing conformance, which we use to

classify the data models described in this chapter. We consider both structural properties

(for example, if conformance is required or optional) and process-oriented properties (for

example, if conformance is explicitly created). By process-oriented we mean the process by

which information is modeled or created within a data model. We conclude this chapter by

discussing how the ULD compares to other data models in terms of its use of conformance.

3.5.1 Structural Conformance Properties

Table 3.1 compares the structural conformance properties for the relational, object-

oriented, E-R, XML, RDF, Topic Map, and VIKI data models. We describe the con-

formance properties used in Table 3.1 below. Note that we use the phrase “an instance

is typed by a schema” below to mean that a construct instance is an instance of (d-inst)

another construct instance, the latter instance serving as a type in the schema.

Schema Existence For a data model, existence of a schema is required if every config-

uration of the data model requires a schema definition. Alternatively, existence of

a schema is optional if a schema is not required (for all configurations of the data

model).

102

Table 3.1: Structural conformance properties of data models.

Schema Individual Extent Individual Schema
Data Model Existence Participation Restriction Restriction Levels

Relational Required Single Complete Complete Single
O-O Required Multiple Complete Minimal Single
E-R Optional Multiple Mixed Minimal Single
XML Optional Single Mixed Complete Single
RDF(S) Optional Multiple Mixed Minimal Collapsed
Topic Map Optional Multiple/Single Mixed Not Applicable Collapsed
VIKI Optional Multiple Mixed Minimal/NA/Complete Single

Individual Participation A data model requires single participation of individuals if

instances conform to at most one schema type (when a schema is present). Alter-

natively, a data model allows multiple participation of individuals if instances can

conform to multiple schema types.

Extent Restriction By extent, we refer to the implied collection of instances of a con-

struct within a configuration. A data model places a complete restriction on an

extent if, when a schema exists, all instances in the extent are required to be typed

by the schema. Alternatively, a data model allows a mixed extent if when a schema

exists, instances in the extent can exist without being typed by the schema.

Individual Restriction A data model places a complete restriction on individual in-

stances if every instance typed by a schema is precisely typed by the schema, that

is, instances do not contain more or less information than defined by their type. A

data model places a minimal restriction on individual instances if instances typed

by a schema are allowed to contain additional information. We note that in some

cases, data models do not place any restriction on the structure of typed, individual

instances, in which case we say the individual restriction is not applicable.

Schema Levels A data model allows at most a single level of schema if schema types

are not permitted to be instances of other types. Alternatively, a data model allows

multiple levels of schema if schema types are permitted to be instances of other types.

In addition, a data model is collapsed if it permits multiple levels of schema using

a single construct (that is, it has a recursive conformance relationship to itself) and

103

the construct does not conform to any other constructs (for example, a topic in a

Topic Map serves as both data and schema). A data model is bounded if it contains

a schema construct (that is, a construct that some other construct can conform to)

that does not conform to another construct. A bounded data model may or may not

have multiple levels of schema. Bounded data models with multiple levels of schema,

but without acyclic conformance definitions, have a fixed number of meta-schema

levels. (Although possible, we do not consider data models without at least one

conformance relationship.)

The schema existence property is reflected in the ULD by the range cardinality re-

striction on conformance relationships. If any conformance relationship in a data model

has a required range constraint (that is, range is either 1 or +), schema is required for

the data model. Alternatively, schema is considered optional for a data model if there

are no required range constraints. For example, in the relational model, the table defini-

tion table = bag of tuple conf(domain=1,range=1):relation has a range cardinal-

ity constraint of 1, thus, the existence of schema is shown as required in Table 3.1. We

apply the schema existence property to the data model as a whole, however, it is also

possible to consider each conformance relationship separately.

Like schema existence, the individual participation property is also reflected in the

ULD by the range cardinality constraint. In particular, if the value of the range con-

straint is * or +, the data model permits multiple individual participation, and otherwise,

permits at most single individual participation. Note that data models with more than

one conformance definition (that is, more than one construct with a conf assertion) may

have different individual participation properties for each such relationship.

The extent and individual restrictions in general are reflected in the ULD using con-

straint assertion rules. (As a special case, if the existence of schema is required and a par-

ticular conformance relationship has a required range constraint, we can infer a complete

extent restriction for the schema construct.) Both the extent and individual restrictions

are local to data model constructs: data models may have a different value of restriction

for each conformance relationship. We note that the extent- and individual-restriction

104

properties are independent. In particular, a data model may require a complete extent

restriction and allow a minimal individual restriction. For example, in object-oriented

data models, every object must have an associated class (that is, for classes, the data

model has a complete extent restriction), however associated objects may have additional

attributes, not defined by the class.

The schema-levels property is global for a data model and is reflected in a data model’s

conformance relationships. In particular, whenever a construct C1 can conform to a con-

struct C2, and C2 can conform to a construct C3, the data model permits multiple levels

of schema (where C1, C2, and C3 are not required to be distinct). When no such C3 exists,

the data model permits only a single level of schema. All data models with a single level

of schema are bounded, and collapsed data models are never bounded. Both the bounded

and collapsed properties are reflected in the ULD description of a data model by directly

analyzing constructs and their conformance definitions.

We note that, in some data models, structural conformance properties may be applied

even if there is not an explicit conformance relationship established between constructs.

For example, in RDF, the occurrence of a property in a triple places conformance-like

restrictions on the subject and object of the triple even though there is not an explicit

conformance definition between the constructs. (Note these restrictions are described

using conformance assertions in the ULD.)

In Table 3.1, we only list multiple property values for a data model if it contains

more than one conformance definition (including conformance-like assertions) and they

have different conformance properties. In particular, a topic in a Topic Map can be the

instance of multiple topics, but associations and occurrences are allowed to be the instance

of at most one topic. In VIKI, an object type specifies a minimal individual restriction,

a composite type requires a complete individual restriction, and the individual restriction

for a collection type is not applicable.

Finally, we note that XML includes the special any content model, which enables a

mixed extension restriction, that is, not all elements and attributes are required to be

typed by a DTD. However, when a DTD is specified, every element and attribute not

associated with an any content model must be completely constrained by the DTD.

105

3.5.2 Process-Oriented Conformance Properties

Table 3.2 compares the process-oriented conformance properties for the relational, object-

oriented, E-R, XML, RDF, Topic Map, and VIKI data models. As shown, we consider

how conformance is established, and in particular, how the d-inst relationship is created.

Conformance is established implicitly in a data model if it is generated as a side-

effect of creating data or schema. For example, in the relational model, the creation of

a relation automatically generates the relation’s corresponding table. Similarly, in many

object-oriented models, an object is created using a class constructor, which establishes

conformance from the object to the class (and to the appropriate superclasses). Note

that data models that require conformance to be established implicitly are schema-first,

because schema must exist prior to creating associated data.

We say conformance is inferred if it is computed. For example, in the original E-R

data model [27], the type of an entity is computed based on its inherent structure. Often,

inferred conformance definitions are computable upon request, for example, by initiating

a parser (as in the case of XML or RDF).

Finally, conformance is established explicitly if the data model offers a mechanism for

declaring conformance explicitly. For example, to create conformance in RDF(S), a triple

must be asserted using the rdf:type property. We note that data models that allow

conformance to be established explicitly must permit data to be defined prior to schema,

that is, the data model is schema-later, and generally permit more flexible conformance

definitions. For example, RDF, Topic Maps, and VIKI each require conformance to be

established explicitly.

3.5.3 The ULD Conformance Properties

Here, we compare the ULD to other data models in terms of conformance. Even though

the ULD is designed as a meta-data-model (that is, to represent other data models) and

not as a general purpose data model, generally speaking, the ULD is another data model—

it is a structured representation for data—that can represent constructs as well as schema

and data.

106

Table 3.2: Process-oriented conformance properties of data models.

Data Model How is conformance established?

Relational Implicitly When relations are defined
O-O Implicitly When an object is created
E-R Inferred An entity’s type is computed from its structure
XML Inferred An XML processor checks conformance

Explicitly A document declares a document type
RDF(S) Inferred Additional conformance computed from subclass and subproperty

Explicitly When the rdf:type property is used
Topic Map Explicitly Items are typed by stating their topic type
VIKI Inferred Users can choose to accept the systems typing suggestions

Explicitly Users can explicitly state the type of an item

For the structural conformance properties, the ULD requires the existence of schema

(every data instance is an instance of a construct, and every construct is an instance of

a construct type), permits multiple individual participation (via the union construct),

requires complete extent restriction, and requires complete individual restriction. More

importantly, the ULD is exactly a bounded data model that permits multiple levels of

schema.

Note that none of the data models we consider are both bounded and permit multiple

levels of schema. By being a bounded data model, the ULD can distinguish and enforce

the construct type, construct, and data-instance levels and provide a clear definition for

each level. Additionally, by allowing multiple levels of schema (according to the d-inst

relationship), the ULD can represent data models that permit optional and multiple levels

of schema.

Finally, in terms of process-oriented properties, conformance in the ULD is established

implicitly (when data is created) using the ct-inst and c-inst relationship, and explicitly

for the d-inst relationship. Note that, as defined in Chapter 2, the d-inst relationship is

(explicitly) defined when an object is created using the c-inst relationship.

3.6 Summary

In this chapter, we used the ULD to define a number of data models, each with distinct

constructs and conformance properties. We also extended the ULD constraint language

107

with constraint macros, which offer short-hand notations for expressing common data-

model constraints. Each constraint macro has a corresponding expression in the ULD

constraint language. (Thus, constraint macros can be executed using the ULD constraint

language.) We used constraint macros and the ULD constraint language to specify the

inherent constraints of each data model presented in this chapter. We also defined a

classification scheme for data models based on conformance. Finally, we compared the

conformance properties of the ULD to other data models.

The definitions of the data models presented in this chapter were taken from various

sources. The relational and E-R data models are standard and are formalized in a number

of textbooks. However, there are many slightly different object-oriented data-models,

each with distinct features. We chose an early version of the O2 data model, which offers

many of the most common features found in object-oriented data models. The XML,

RDF, and Topic-Map data models are being defined as standards. There has been some

work aimed at formalizing certain features of XML and RDF. For instance, a partial

axiomatization has been developed for RDF Schema [41], which we used directly to define

conformance constraints. The VIKI data model was designed for use in a hypertext tool,

and is described informally in research papers. In general, we believe the ULD can benefit

a data-model engineer by offering a mechanism to formally define the constructs and

constraints of a data model. By formalizing a data model, a data-model engineer can

provide a clear, concise, and unambiguous specification of a data model.

Our goal in this chapter was to show that the ULD can be used to give complete

descriptions of a wide range of data models. As future work, we believe that it would

be useful to develop techniques to help data-model engineers verify that data-model con-

straints are consistent and correct (that is, correct with respect to either a formalization

of a data model, or to an engineer’s understanding of the data model). For example, it

may be possible to generate sample schema and data instances from the ULD description

of the data model, and ask the data-model engineer if the samples are valid. If a sample

is not valid, we can infer that the constraints are not restrictive enough. Alternatively,

it may be useful to generate samples that violate data-model constraints, and ask the

data-model engineer if the samples are valid. If such a sample is considered valid, we can

108

infer that the ULD constraints are too restrictive. The challenge of this approach is to

select the appropriate set of test cases (that is, samples) from the ULD definition of the

data model to determine whether the data-model constraints are correct.

For the XML data model, we used this approach to verify that the constraints given

are accurate. In particular, for our tests, we used Prolog to represent and execute the

XML data-model constraints. We also (manually) defined a set of test documents for a

specific DTD. The test documents were designed to highlight specific cases of the data-

model constraints. For example, we defined both valid and invalid documents to test

each regular-expression operator. In general, we believe the problem is similar to software

testing, which may offer useful techniques to determine whether data-model constraints

are correctly specified.

Chapter 4

Transformation

This chapter describes a language for data model, schema, and data transformation. The

language extends the ULD query language defined in Chapter 2 and can express flexible

mappings that access multiple levels of information including data model, schema, and

instance data. We begin in Section 4.1 by describing the transformation language. In

Section 4.2, we use the language to describe mappings from the E-R and XML data models

to the relational data model, a schema mapping for the example schemas in Chapter 1, and

a mapping that describes an RDF serialization in XML. Finally, in Section 4.3, we sketch

approaches for reasoning with mappings expressed in the transformation language. In

particular, we give examples that use constraints to check for well-formed transformations

and to elaborate partial mappings.

4.1 The ULD Transformation Language

The ULD transformation language exploits stratified Datalog¬ to express mappings be-

tween heterogeneous information sources. The ULD transformation language is similar

to the Well-founded Object Language (WOL) [35] in that it is a declarative, logic-based

language for expressing mappings. The WOL language, however, is designed specifically

for a restricted object-oriented data model to express schema mappings, whereas our

transformation language leverages the ULD to express a wide range of transformations.

A ULD mapping rule is expressed against source and target configurations. For ex-

ample, the following rule converts E-R entity types to relations in the relational data

model.

109

110

rel/c-inst(T, relation) ⇐= er/c-inst(T, entityType).

The rule is read “if T is an entity-type identifier in the er configuration, then T is a

relation in the rel configuration,” where er is the source configuration and rel is the

target configuration. We use the special symbol ⇐= to denote a mapping rule: the body

of the rule is on the right side of the⇐= symbol and the head of the rule is on the left side

of the ⇐= symbol. The mapping above states only that entity-type identifiers in a source

configuration are mapped to relation identifiers in a target configuration. Additional rules

are needed to transform entity-type names to relation names, entity-type attributes to

relation attributes, to convert primary keys, and so on.

A transformation consists of one or more mapping rules and an optional set of rules

that define intensional predicates (used by the mapping rules). For present purposes, we

assume there is exactly one source and one target configuration for a transformation. We

also assume that a target configuration contains a description of its data model prior to the

execution of a transformation. Target configurations may also contain additional schema

and instance data.

A mapping rule takes the following form, where n ≥ 1, l ≥ 0 and m is the rule name.

mapping m:

h1, h2, ..., hn ⇐= b1, b2, ..., bl.

The head of a mapping rule consists of one or more positive ULD formulas h1 to hn

expressed over a target configuration. As in Datalog¬, the body of a rule consists of

zero or more positive or negative extensional formulas b1 to bl expressed against a source

configuration. Optionally, b1 to bl can also contain formulas expressed against a target

configuration as well as intensional formulas defined in the transformation. The syntax

for mapping rules is similar to ULD constraints, however, mapping rules have a different

interpretation. Namely, a mapping rule is equivalent to a rule expressed using stratified

Datalog¬ extended to allow more than one formula in the head of the rule.

When a mapping rule is executed, each formula in the head of the rule is added to (or

asserted in) a target configuration. In other words, a mapping rule specifies one or more

111

updates to target configurations. The output of a transformation is the updated target

configuration that results from computing the fixpoint of the corresponding mapping and

intensional rules.

In the previous example, a new relation is constructed in the target configuration for

every entity type in the source configuration. As another example, the following mapping

rule adds the name and an (empty) attribute list to every generated relation in rel (the

target configuration).

rel/T.hasName:N, rel/c-inst(N, uldString), rel/T.hasAtts:AS,

rel/c-inst(AS, attList) ⇐=

er/c-inst(T, entityType), er/T.hasName:N, er/T.hasAtts:AS.

As shown, the head of this rule contains multiple formulas. Each formula in the head

of the rule is asserted in the target configuration such that every variable is replaced

with its corresponding variable assignment. (A new variable assignment is obtained in

each evaluation of the body of the rule.) We allow multiple formulas in the head of a

mapping rule primarily for convenience. However, there are certain mapping rules (which

we describe in more detail below) that cannot be expressed in standard Datalog, that is,

when only one formula is allowed in the head of a mapping rule.

The configuration name for a formula can be dropped in a mapping rule when default

source and target configurations are specified. In particular, formulas in the body of a

mapping rule without explicit configuration modifiers are matched against formulas in the

default source configuration, and formulas in the head of the rule are inserted into the

default target configuration. Thus, the previous example can be equivalently expressed as

follows, where the default source configuration is er and the default target is rel.1

T.hasName:N, c-inst(N, uldString), T.hasAtts:AS, c-inst(AS, attList) ⇐=

c-inst(T, entityType), T.hasName:N, T.hasAtts:AS.

So far, we have assumed entity-type identifiers do not conflict with identifiers in the

target configuration. That is, each entity-type identifier in the source configuration is

1Because we assume a single source and target configuration for the transformations presented in this
chapter, we typically drop the configuration modifier in mapping rules.

112

added directly to the target configuration as an instance of a relation construct. If a

source identifier is already used in the target configuration, the resulting configuration

may not be well-formed. (For example, the identifier could become an instance of more

than one non-union construct in the target.) The following rule guarantees that non-

conflicting identifiers are added to the target. The rule is read “if T is an entity type in

the source, generate a new identifier R in the target such that R is a relation.”

c-inst(R, relation) ⇐= c-inst(T, entityType).

This rule introduces an implicit mapping between identifiers T and generated iden-

tifiers R. If the rule contained a second formula in the head that also used R, the same

variable assignment for R is used in both formulas (thus, the same value of R is used

in both formulas to update the target). For example, the following rule uses two head

formulas to connect the name of an entity type to the name of the corresponding relation.

Note that an equivalent Datalog representation does not exist for this mapping rule. The

mapping rule cannot be divided into an equivalent set of Datalog rules that contain ex-

actly one formula in the head because R is assumed to be assigned the same value in both

formulas.

c-inst(R, relation), R.hasName:N ⇐= c-inst(T, entityType), T.hasName:N.

We provide a mechanism to define explicit mappings between identifiers using the

identifier-creation operator K, which generates new identifiers using existing source-

configuration identifiers (or using labels, which we describe below). The identifier-creation

operator K is a Skolem function [39]. An advantage of using a Skolem function to create

identifiers is it provides a mechanism to retrieve the generated identifiers in subsequent

rules. To illustrate, consider the following mapping rule that implicitly generates new

identifiers.

R.hasName:N, c-inst(N, uldString), R.hasAtts:AL, c-inst(AL, attList) ⇐=

c-inst(T, entityType), T.hasName:N, T.hasAtts:AS.

Once this rule is executed for a particular entity-type T, we can no longer add attributes

of T to the corresponding relation R in subsequent rules. The connection between T and

113

R (and similarly for AS and AL) is lost. The following rule is an equivalent mapping that

uses K to define the explicit connection between T and R (and AS and AL). We describe

the syntax of the K operator below.

R.hasName:N, c-inst(N, uldString), R.hasAtts:AL, c-inst(AL, attList) ⇐=

c-inst(T, entityType), T.hasName:N, T.hasAtts:AS, KT (R), KAS(AL).

In this example, the values (that is, variable assignments) of T are used to create identifiers

that serve as variable assignments for R. (Note that T must be ground when K is called.)

Given the same value for T, KT (R) always unifies R with the same identifier. Other

mapping rules can now obtain the relation (or attribute list) identifier generated from the

original entity type (or attribute set, respectively), as shown in the following mapping

rule, which converts entity-type attributes to relation attributes.2

Ar∈AL, c-inst(Ar, attribute), Ar.hasName:N, c-inst(N, uldString),

Ar.hasDomain:D ⇐=

c-inst(T, entityType), T.hasAtts:AS, Ae∈AS, Ae.hasName:N,

Ae.hasDomain:D, KAS(AL), KAe(Ar).

In general, the identifier creation operator takes the form KV1,V2,...,Vn
L (V) for n ≥ 0,

where V1 to Vn are (ground) variables representing source-configuration identifiers, L is an

optional constant label, and V is a variable that is unified with the generated identifier.

When V is bound, the call to K returns true if V can be unified with the value of the

created identifier, and false otherwise. The K operator can equivalently be written as the

Skolem function K(V1, ..., Vn, L). Thus, given values for V1 to Vn and L, K always returns

the same value V .3

2Note that even with K, there are still cases where multiple formulas in the head a mapping rule are
needed. In particular, multiple formulas are needed if the body of the rule depends on information in
the target configuration and the rule generates new information in the target. An example of this case is
shown by the mapping rule rdfxml-3 in Section 4.2.4.

3We implement the K operator in Prolog (see Section 6.1) using the binary predicate idgen, where the
first argument is a list of terms T , and the second argument is the generated identifier. The list of terms
T is used to hold the ground, source-configuration identifiers (V1 to Vn) and the constant label (L). For
example, the expression KAS

attList(AL) is represented in Prolog as idgen([AS, ‘attList’], AL).

114

The expression Ar ∈ AL in the head of the previous example inserts Ar into the list

AL. In general, an expression X ∈ C in the head of a mapping rule serves to insert the

value X into the collection C for each unique evaluation of the body of the rule. For lists,

we assume the expression X ∈ C appends X to the end of the list. It is also possible to

state the index of X in the list C explicitly using the expression C[I] = X, which also adds

X to C.

In addition to the K operator, we also permit other special-purpose functions. For

example, mathematical operations such as addition as well as concatenation of strings

(denoted using the ‘·’ operator) are used in the examples of Section 4.2. We also permit

user-defined functions, which are often used to resolve differences in data. For example,

a user-defined function can be used to convert full names in last-name-first format to

full names in first-name-first format. As in Datalog, we require function parameters to

be ground when a function is called, that is, every parameter is either a constant or a

variable unified with a constant through a variable binding.

Finally, we note that it is possible to create non-terminating mapping rules using the

ULD transformation language. For instance, consider the following rule (which does not

terminate), where r is the name of the target configuration and c is a construct.

r/c-inst(Y, c) ⇐= r/c-inst(X, c), KX(Y).

This rule does not have a fixpoint: Each time the body is evaluated, a new identifier is

generated, and the formula inserted into the target causes the body of the rule to have

a new evaluation. The rule results in infinite recursion. (Note that we can restrict the

domain of K to source-configuration variables, in which case, the rule above would not be

well-formed.)

4.2 Transformation Examples

This section defines a set of common transformations using the ULD transformation lan-

guage. We start by describing an E-R to relational transformation. We divide the trans-

formation into a set of schema and data mappings. By applying both transformations, the

115

schema and instance data in an E-R configuration is converted to a relational schema and

a corresponding database in the target configuration. Alternatively, the schema transfor-

mation can be applied in isolation, which is what is typically done in conceptual modeling

approaches. We then give two standard XML-to-relational transformations. The first

transformation converts XML instance data directly to a relational database, without the

use of an XML DTD. The second transformation requires the XML source to have a

DTD, which is converted to a relational schema, and the XML instance data is converted

to a corresponding database for the schema. Next, we describe a schema transformation

from the XML DTD of Figure 1.2 to the RDF Schema of Figure 1.3. The transformation

can be used to convert XML documents that conform to the DTD in Figure 1.2 to RDF

instances that conform to the RDF Schema in Figure 1.3. Finally, we describe a transfor-

mation from RDF to XML that defines an XML interchange format for RDF similar to

the standard RDF XML syntax [47]. The advantage of such a transformation is that the

mapping between the data model and its serialization syntax (that is, the syntax used to

interchange schema and instance data in the data model) is made explicit.

We note that none of the transformations described here can be fully expressed in

traditional meta-data-model frameworks. In particular, the transformations use a mix of

data-model, schema, and instance data to introduce conventions for representing a source

configuration in a target data model.

4.2.1 E-R to Relational Transformations

The E-R to relational schema mapping below is similar to the mapping given by Elmasri

and Navathe [38]. Each entity type is converted to a relation (er-rel-1) and the attributes

of entity types are mapped to corresponding relation attributes (er-rel-2). Similarly, each

relationship type is mapped to a relation (er-rel-4) and relationship-type attributes are

mapped to relation attributes (er-rel-5).

We simplify the transformation defined by Elmasri and Navathe as follows. Instead of

using the primary key of an entity type as the primary key for the corresponding relation,

we introduce a new relation attribute called “id” (er-rel-3). The id-attribute serves as a key

for the relation. Each relation that is created from an E-R relationship type contains one

116

attribute for each role of the relationship type (er-rel-6). A foreign key is also created for

each role attribute to the corresponding id-attribute. (We note that it is possible to define

a mapping using the ULD transformation language to convert entity-type primary keys

to relation primary keys, but for exposition, we choose the simpler id-attribute approach

below.)

Transformation 1 (E-R-to relational schema transformation)

mapping er-rel-1: (Entity types become relations)
c-inst(R, relation), R.hasName:N, c-inst(N, uldString) ⇐=

c-inst(T, entityType), T.hasName:N, KT
relation(R).

mapping er-rel-2: (Entity-type attributes become relation attributes)
R.hasAtts:AL, c-inst(AL, attList), c-inst(Ar, attribute), Ar∈AL, Ar.hasName:N,
c-inst(N, uldString) Ar.hasDomain:D ⇐=

c-inst(T, entityType), T.hasAtts:AS, Ae∈AS, Ae.hasName:N, Ae.hasDomain:D,
KT

relation(R), KAS
attList(AL), KAe

attribute(Ar).

mapping er-rel-3: (Create a key for each relation)
c-inst(A, attribute), A.hasName:‘id’, c-inst(‘id’, uldString), A.hasDomain:‘uldString’,
A∈AL, c-inst(P, pKey), P.forType:R, P.keyAtts:PL, c-inst(PL, pKeyAttList), A∈PL ⇐=

c-inst(T, entityType), T.hasAtts:AS, KT
relation(R), KAS

attList(AL), KT
id(A), KT

pkey(P),
KT

pkeyattlist(PL).

mapping er-rel-4: (Relationship types become relations.)
c-inst(R, relation), R.hasName:N, c-inst(N, uldString) ⇐=

c-inst(T, relType), T.hasName:N, KT
relation(R).

mapping er-rel-5: (Relationship attributes become relation attributes.)
R.hasAtts:AL, c-inst(AL, attList), c-inst(Ar, attribute), Ar∈AL, Ar.hasName:N,
c-inst(N, uldString) A.hasDomain:D ⇐=

c-inst(T, relType), T.hasAtts:AS, Ae∈AS, Ae.hasName:N, Ae.hasDomain:D,
KT

relation(R), KAS
attList(AL), KAe

attribute(Ar).

mapping er-rel-6: (Relationship roles become foreign key attributes.)
c-inst(A, attribute), A∈AL, A.hasName:N, c-inst(N, uldString), A.hasDomain:‘uldString’,
c-inst(F, fKey), fKey.forRel:Rr, fKey.toRel:Re, fKey.keyAtts:FL, c-inst(FL, fKeyAttList),
A∈FL ⇐=

117

c-inst(Tr, relType), Tr.hasAtts:AS, Tr.hasRoles:RL, RL[I]=R, R.hasType:Te,
N=‘role’ · I, KR,I

attribute(A), KR,I
fkey(F), KR,I

fkeyattlist(FL), KAS
attList(AL), KTr

relation(Rr),
KTe

relation(Re).

The E-R to relational data mapping given below stores each entity and relationship

as a tuple in one or more relations. For example, every entity that has an entity type is

represented as a tuple in the entity type’s corresponding relation. An entity or relationship

with more than one type is transformed into multiple tuples, one for each corresponding

type.

The data transformation converts only those entities and relationships with a corre-

sponding entity and relationship type. Thus, the mapping selects only the E-R items that

are covered by schema. We could additionally represent those entities and relationships

that do not have corresponding schema by defining two default relations, one for entities

and one for relationships. For example, the default entity relation would consist of three

attributes, one to store the entity identifier, one to store a property name, and one to store

a property value. Thus, the table would consist of one tuple for every entity property,

where each such tuple has the same value for the id-attribute.

Note that, in the mapping rules er-rel-8 and er-rel-13, we assume for simplicity that both

configurations have the same atomic types. Otherwise, we would need to add additional

formulas to the head of each rule to define the domain type in the source.

Transformation 2 (E-R-to-relational data transformation)

mapping er-rel-7: (Every entity relation has a corresponding table.)
c-inst(B, table), d-inst(B, T) ⇐=

c-inst(T, entityType), KT
relation(R), KT

table(B).

mapping er-rel-8: (Entities become tuples.)
c-inst(P, tuple), P∈B, d-inst(P, R) ⇐=

c-inst(E, entity), d-inst(E, T), KE,T
tuple(P), KT

table(B), KT
relation(R).

mapping er-rel-9: (Entity attributes become relation attributes.)
P[I]=V, c-inst(V, C) ⇐=

c-inst(E, entity), d-inst(E, T), E.hasProps:Pe, P∈Pe, P.hasName:N, P.hasVal:V,
c-inst(V, C), T.hasAtts:AS, KAS

attList(AL), rel/AL[I]=A, rel/A.hasName:N,

118

KE,T
tuple(P).

mapping er-rel-10: (Create a key value for each entity tuple.)
P[I]=V, c-inst(V, uldString) ⇐=

c-inst(E, entity), d-inst(E, T), T.hasAtts:AS, KAS
attList(AL),

rel/AL[I]=A, rel/A.hasName:‘id’, KE,T
id (V), KE,T

tuple(P).

mapping er-rel-11: (Every relationship has a corresponding table.)
c-inst(B, table), d-inst(B, R) ⇐= c-inst(T, relType), KT

relation(R), KT
table(B).

mapping er-rel-12: (Relationships become tuples.)
c-inst(P, tuple), P∈B, d-inst(P, R′) ⇐=

c-inst(R, rel), d-inst(R, T), KT
table(B), KR,T

tuple(P), KR
relation(R′)

mapping er-rel-13: (Relationship attributes become relation attributes.)
P[I]=V, c-inst(V, C) ⇐=

c-inst(R, rel), d-inst(R, T), R.hasProps:Pe, P∈Pe, P.hasName:N, P.hasVal:V,
c-inst(V, C), T.hasAtts:AS, KAS

attList(AL), rel/AL[I]=A, rel/A.hasName:N,
KR,T

tuple(P).

mapping er-rel-14: (Relationship roles become relation attributes.)
P[I]=V, c-inst(V, uldString) ⇐=

c-inst(R, rel), d-inst(R, Tr), Tr.hasAtts:AS, Tr.hasRoles:RL, R.associates:EL,
EL[Ie]=E, AS[Ie]=Te, KAS

attList(AL), KR,Ie

attribute(A), rel/AL[I]=A, KE,Te

id (V), KR,Tr

tuple(P).

4.2.2 XML to Relational Transformations

We consider two XML to relational transformations. The first is given below (Transfor-

mation 3) and is called the “edge” approach [77]. This transformation does not consider

schema information from the XML configuration and instead transforms the XML docu-

ment directly to tuples in a pre-defined relational schema.

In the edge approach, a single relational table (called the edge table) is used to store

an XML document. The relation for the edge table contains five attributes. To illustrate,

consider the XML example from Figure 1.2 represented as a tree in Figure 4.1 and in

an edge table in Figure 4.2. As shown, each element, attribute, and PCDATA value is

represented as a distinct node. Each node in the XML document, except PCDATA, is

119

1moviedbid1

1

id5

2

0

4321

id4

id3

id2

...

‘Spacey, Kevin’‘Thriller’‘Gramercy’
role = ‘Supporting Actor’

‘The Usual Suspects’

actorgenrestudiotitle

moviemovie

Figure 4.1: The edge-based, tree representation of the XML document of Figure 1.2. Nodes
are annotated with their ordinal number and levels are annotated with their sourceId value.

mapped to a tuple in the edge table. The first attribute of the edge table, called SourceId,

stores an identifier that uniquely identifies the parent node. For example, the root node

(moviedb) of Figure 4.1 has identifier id1, the children of moviedb have the identifier id2,

the children of the first child of moviedb have the identifier id3, the children of the second

child of moviedb have the identifier id5, and so on. The second attribute of the edge table

stores the node’s label, which is either an element name or an attribute name (called Tag

[77]). The third attribute stores the order (Ordinal) of a node relative to its parent node.

For attributes, the ordinal value is always zer and for the root element the ordinal value

is one. The fourth attribute (TargetId) stores the SourceId for the children of the node or

‘NULL’ if the node does not have any children. Finally, the fifth attribute (Data) stores

the PCDATA value, the attribute value, or ‘NULL’ if neither exists. Note that the Data

attribute is an example of inlining [74, 77].

The mapping rules edge-1 through edge-6 below create the pre-defined relational

schema for the edge transformation. The last mapping rule (edge-7) uses the findEdge

intensional predicate to generate tuples, which are stored in the edge schema.

Our motivation for including the XML edge-based mapping is to highlight the flexibility

of the ULD transformation language. In particular, the transformation expressed in the

ULD works regardless of whether a schema is defined for the XML configuration. Existing

meta-data-model approaches are based on the assumption that schema is always defined

120

EdgeTable

SourceId Tag Ordinal TargetId Data
id1 moviedb 1 id2 ‘NULL’
id2 movie 1 id3 ‘NULL’
id2 movie 2 id5 ‘NULL’
id3 title 1 ‘NULL’ ‘The Usual Suspects’
id3 studio 2 ‘NULL’ ‘Gramercy’
id3 genre 3 ‘NULL’ ‘Thriller’
id3 actor 4 id4 ‘Spacey, Kevin’
id4 role 0 ‘NULL’ ‘Supporting Actor’
id5 title 1 ‘NULL’ ‘Meet the Parents’
id5 studio 2 ‘NULL’ ‘Universal’
id5 genre 3 ‘NULL’ ‘Comedy’
id5 actor 4 id6 ‘De Niro, Robert’
id6 role 0 ‘NULL’ ‘Leading Actor’

Figure 4.2: The result of applying the edge transformation.

for a source. Thus, they cannot express such data-only transformations because access to

data can occur only through schema structures.

Finally, the edge-based transformation maps XML data directly to relational data

using an agreed-upon convention. We note that, in general, conventions are often intro-

duced in transformations among heterogeneous information sources due to the differences

in the constructs of the data models. In the edge approach, XML information is stored in

the relational data model using a predefined table to represent an ordered tree, because

the relational data model does not have constructs for explicitly representing hierarchical

information.

Transformation 3 (An XML-to-relational edge transformation)

mapping edge-1: (Construct the edge table.)
c-inst(edgeTbl, relation), edgeTbl.hasName:‘EdgeTable’, c-inst(‘EdgeTable’, uldString),
c-inst(edgeTblAtts, attList), edgeTbl.hasAtts:edgeTblAtts ⇐= .

mapping edge-2: (Construct the source id attribute.)
c-inst(sourceId, attribute), sourceId.hasName:‘SourceId’, c-inst(‘SourceId’, uldString),
sourceId.hasDomain:‘uldString’, edgeTblAtts[1]=sourceId ⇐= .

mapping edge-3: (Construct the tag attribute.)
c-inst(tag, attribute), tag.hasName:‘Tag’, c-inst(‘Tag’, uldString),

121

tag.hasDomain:‘uldString’, edgeTblAtts[2]=tag ⇐= .

mapping edge-4: (Construct the ordinal attribute.)
c-inst(ordinal, attribute), ordinal.hasName:‘Ordinal’, c-inst(‘Ordinal’, uldString),
ordinal.hasDomain:‘uldInteger’, edgeTblAtts[3]=ordinal ⇐= .

mapping edge-5: (Construct the target id attribute.)
c-inst(targetId, attribute), targetid.hasName:‘TargetId’, c-inst(‘TargetId’, uldString),
targetId.hasDomain:‘uldString’, edgeTblAtts[4]=targetId ⇐= .

mapping edge-6: (Construct the data attribute.)
c-inst(data, attribute), data.hasName:‘Data’, c-inst(‘Data’, uldString),
data.hasDomain:‘uldString’, edgeTblAtts[5]=data ⇐= .

mapping edge-7: (Convert elements to tuples.)
c-inst(ID, tuple), tuple[1]=S, tuple[2]=T, tuple[3]=O, tuple[4]=R, tuple[5]=D,
c-inst(S, uldString), c-inst(T, uldString), c-inst(O, uldInteger), c-inst(R, uldString),
c-inst(D, uldString), tuple∈edgeTbl ⇐=

findEdge(ID, S, T, O, R, D).

% root node without child element and text content
findEdge(ID, ID, T, 1, ‘NULL’, ‘NULL’) ← c-inst(D, doc), D.hasRoot:E, E.hasTag:T,

¬hasSubElemsOrAtts(E), E.hasChildren:C, ¬hasPCData(C), KE
tuple(ID).

% root node with text content, but without child element
findEdge(ID, ID, T, 1, ‘NULL’, D) ← c-inst(D, doc), D.hasRoot:E, E.hasTag:T,

¬hasSubElemsOrAtts(E), E.hasChildren:C, hasPCData(C, D), KE
tuple(ID).

% root node with child element, but without text content
findEdge(ID, ID, T, 1, R, ‘NULL’) ← c-inst(D, doc), D.hasRoot:E, E.hasTag:T,

hasSubElemsOrAtts(E), KE
children(R), E.hasChildren:C, ¬hasPCData(C),

KE
tuple(ID).

% root node with child element and text content
findEdge(ID, ID, T, 1, R,D) ← c-inst(D, doc), D.hasRoot:E, E.hasTag:T,

hasSubElemsOrAtts(E), KE
children(R), E.hasChildren:C, hasPCData(C, D),

KE
tuple(ID).

% attribute
findEdge(ID, S, T, 0, ‘NULL’, D) ← c-inst(E, element), KE

children(S), E.hasAtts:AS,
A∈AS, A.hasName:T, A.hasVal:D, KA

tuple(ID)
% element without child element and text content
findEdge(ID, S, T, O, ‘NULL’, ‘NULL’) ← c-inst(Ep, element), Ep.hasChildren:C,

122

hasChild(C, E, O), KEp

children(S), E.hasName:T, ¬hasSubElemsOrAtts(E),
E.hasChildren:C, ¬hasPCData(C), KE

tuple(ID).
% element with text content, but without child element
findEdge(ID, S, T, O, ‘NULL’, D) ← c-inst(Ep, element), Ep.hasChildren:C,

hasChild(C, E, O), KEp

children(S), E.hasName:T, ¬hasSubElemsOrAtts(E),
E.hasChildren:C, hasPCData(C, D), KE

tuple(ID).
% element with child element, but without text content
findEdge(ID, S, T, O, R, ‘NULL’) ← c-inst(Ep, element), Ep.hasChildren:C,

hasChild(C, E, O), KEp

children(S), E.hasName:T, hasSubElemsOrAtts(E), KE
children(R),

E.hasChildren:C, ¬hasPCData(C), KE
tuple(ID).

% element with child element and text content
findEdge(ID, S, T, O, R, D) ← c-inst(Ep, element), Ep.hasChildren:C, hasChild(C, E, O),

KEp

children(S), E.hasName:T, hasSubElemsOrAtts(E), KE
children(R), E.hasChildren:C,

hasPCData(C, D), KE
tuple(ID).

hasPCData(C, D) ← c-inst(C, fullContent), C.hasNode:D, c-inst(D, pcdata).
hasPCData(C, D) ← c-inst(C, fullContent), C.hasContent:C′, hasPCData(C′, D).

hasPCData(C) ← hasPCData(C, D).

hasSubElems(C) ← c-inst(C, fullContent), C.hasNode:N, c-inst(N, element).
hasSubElems(C) ← c-inst(C, fullContent), C.hasChildren:C′, hasSubElems(C′).

hasSubElemsOrAtts(E) ← c-inst(E, element), E.hasAtts:AS, |AS|$=0.
hasSubElemsOrAtts(E) ← c-inst(E, element), E.hasChildren:C, hasSubElems(C).

hasChild(C, E, 1) ← c-inst(C, fullContent), C.hasNode:E, c-inst(E, element).
hasChild(C, E, O) ← c-inst(C, fullContent), C.hasContent:C′, hasChild(C′, E, O′),

O=O′+1.

In contrast to the edge transformation, the “attribute” approach [74, 77] uses schema

information to map an XML document to a relational database. The attribute trans-

formation (Transformation 4) is given below. Figure 4.3 shows the result of applying the

attribute transformation on the XML DTD and instance of Figure 1.2. The transformation

maps each element type to a relation consisting of an id-attribute. Each element-type that

is in the content specification of another element type forms a new relation, which stores

the sub-element connection between elements. This approach is similar to the mapping

of relationship types to relations in the E-R to relational transformation. The attribute

123

moviedb movie title

id
id1

id
id2
id3

id content
id4 ‘The Usual Suspects’
id5 ‘Meet the Parents’

studio genre actor
id content
id6 ‘Gramercy’
id7 ‘Universal’

id content
id8 ‘Thriller’
id9 ‘Comedy’

id role content
id10 ‘Supporting Actor’ ‘Spacey, Kevin’
id11 ‘Leading Actor’ ‘De Niro, Robert’

moviedbmovie movietitle moviestudio
moviedb movie
id1 id2
id1 id3

movie title
id2 id4
id3 id5

movie studio
id2 id6
id3 id7

moviegenre movieactor
movie genre
id2 id8
id3 id9

movie actor
id2 id10
id3 id11

Figure 4.3: The result of applying the attribute transformation.

approach can also inline sub-elements [14, 74], where based on DTD constraints, an el-

ement can be stored directly in its parent element. The transformation below does not

consider general inlining, however, we do inline PCDATA where appropriate. Also note

that the transformation given below does not consider sub-element ordering as in the edge

approach.

The attribute approach only maps elements captured by the XML DTD. However, as

in the E-R to relational mapping, we could add rules (and conventions) for storing those

XML elements that do not have a corresponding type.

Transformation 4 (An XML-to-relational attribute transformation)

mapping att-1: (Every element type becomes a relation.)
c-inst(R,relation), R.hasName:N, c-inst(N, uldString), R.hasAtts:AL,
c-inst(AL, attList) ⇐=

c-inst(T, elemType), T.hasName:N, T.hasAtts:AD, KT
relation(R), KAD

attList(AL).

mapping att-2: (Every element type has an identifying attribute in the corresponding relation.)
c-inst(A, attribute), A∈AL, A.hasName:‘id’, c-inst(‘id’, uldString),
A.hasDomain:‘uldString’ ⇐=

124

c-inst(T, elemType), T.hasAtts:AD, KAD
attList(AL), KT

idatt(A), .

mapping att-3: (Element type attributes become relation attributes.)
c-inst(Ar, attribute), Ar∈AL, Ar.hasName:N, c-inst(N, uldString),
Ar.hasDomain:‘uldString’ ⇐=

c-inst(T, elemType), T.hasAtts:AD, Ae∈AD, Ae.hasName:N, KAe
attribute(Ar),

KAD
attList(AL).

mapping att-4: (Element types with content have additional relation attributes.)
c-inst(A, attribute), A∈AL, A.hasName:‘content’, c-inst(‘content’, uldString),
A.hasDomain:‘uldString’ ⇐=

c-inst(T, elemType), T.hasModel:CS, c-inst(CS, simpleSpec), CS.isPCData:true,
KT

content(A), T.hasAtts:AD, KAD
attList(AL).

mapping att-5: (Element-type subelements become edge relations.)
c-inst(R, relation), R.hasName:N, c-inst(N, uldString), R.hasAtts:AL,
c-inst(AL, attList) ⇐=

c-inst(T1, elemType), T1.hasModel:CS, isSubElement(CS, T2), T1.hasName:N1,
T2.hasName:N2, N = N1·N2, KT1,T2

relation(R), KT1,T2
attList(AL).

mapping att-6: (Subelement edge relations have two identifying attributes.)
c-inst(A1, attribute), c-inst(A2, attribute), AL[1]=A1, AL[2]=A2, A1.hasName:N1,
c-inst(N1, uldString), A2.hasName:N2, c-inst(N2, uldString) ⇐=

c-inst(T1, elemType), T1.hasModel:CS, isSubElemType(CS, T2), T1.hasName:N1,
T2.hasName:N2, KT1,T2

relation(R), KT1,T2
attList(AL), KT1,T2

att1 (A1), KT1,T2
att2 (A2).

mapping att-7: (Create a table for each element type.)
c-inst(B, table), d-inst(B, R) ⇐= c-inst(T, elemType), KT

relation(R), KT
table(B).

mapping att-8: (Create a table for each subelement type.)
c-inst(B, table), d-inst(B, R) ⇐=

c-inst(T1, elemType), T1.hasModel:CS, isSubElemType(CS, T2), KT1,T2
relation(R),

KT1,T2
table (B).

mapping att-9: (Create a tuple for each element.)
c-inst(P, tuple), P∈B ⇐= c-inst(E, element), d-inst(E, T), KT

table(B), KE
tuple(P).

mapping att-10: (Create an identifying-attribute value for each element.)
P[I]=V, c-inst(V, uldString) ⇐=

125

c-inst(E, element), d-inst(E, T), KT
table(R), KT

idatt(A),
rel/R.hasAtts:AL, rel/AL[I]=A, KE

tuple(P), KE
idatt(V).

mapping att-11: (Create an attribute value for each element attribute.)
P[I]=V, c-inst(V, uldString) ⇐=

c-inst(E, element), d-inst(E,T), T.hasAtts:AD, Ae∈AD, Ae.hasVal:V,
KAe

attribute(Ar), KAD
attList(AL), rel/AL[I]=Ar, KE

tuple(P).

mapping att-12: (Create an attribute value for elements with only text content.)
P[I]=V, c-inst(V, uldString) ⇐=

c-inst(E, element), d-inst(E, T), T.hasAtts:AD, T.hasModel:CS,
c-inst(CS, simpleSpec), CS.isPCData:true, E.hasChildren:C, C.hasNode:V,
c-inst(V, pcdata), KT

content(A), KAD
attList(AL), rel/AL[I]=A, KE

tuple(P).

mapping att-13: (Create a tuple for each subelement.)
c-inst(P, tuple), P[1]=V1, P[2]=V2, P∈B ⇐=

c-inst(E1, element), d-inst(E1, T1), E1.hasChildren:C, isSubElement(C, E2),
d-inst(E2, T2), KT1,T2

table (B), KE1,E2
tuple (P), KE1

idatt(V1), KE2
idatt(V2).

isSubElemType(CS, T) ← c-inst(CS, mixedSpec), T∈CS.
isSubElemType(CS, T) ← c-inst(CS, elemRE), CS.hasType:T.
isSubElemType(CS, T) ← c-inst(CS, regExp), CS.hasRE:CS′, isSubElemType(CS′, T).
isSubElemType(CS, T) ← c-inst(CS, regExp), CS.hasTail:CS′, isSubElemType(CS′, T).

isSubElement(C, E) ← c-inst(C, fullContent), C.hasNode:E, c-inst(E, element).
isSubElement(C, E) ← c-inst(C, fullContent), C.hasContent:C′, isSubElement(C′, E).

4.2.3 Schema Transformation

The previous transformations perform data-model-to-data-model conversions. Here, we

consider using the ULD transformation language to convert data among particular

schemas, where each schema is represented in a different data model.

The following transformation converts the XML source given in Figure 1.2 to a valid

RDF source that conforms to the RDF Schema of Figure 1.3. The transformation must

consider schematic differences, for example, genre information is represented as data in

the XML example and as schema in the RDF example, as well as format differences, for

example, names are represented in slightly different ways between the schemas. We make

126

the following assumptions concerning the transformation. The function toRDFName takes

a name formatted last-name first and returns a new name formatted first-name first. The

identifiers film, thriller, comedy, and so on are defined in the RDF Schema. Similarly, the

identifiers movie, genre, and so on are defined in the XML DTD. And finally, the Skolem

function KM
id (U)uldURI unifies the variable U with a unique and valid URI value. (Note

that uldURI is another modifier to the K function that in general, requests identifiers that

conform to a specific atomic type such as strings, integers, URIs, and so on.)

The transformation below is a schema-to-schema mapping for schemas represented in

distinct data models. As a result of the mapping, XML data is directly converted to valid

RDF data. Alternatively, in schema-mapping approaches, the transformation below must

typically be expressed in a common data model. The XML DTD and RDF Schema would

first be converted to the common data model (which in general is not trivial). The schema

mapping is then defined in the common data model. And finally, the transformation is

implemented by converting the mapping rules to an executable program, or by converting

source data to the common data model, executing the transformation within the common

data model, and then converting the resulting data to the target data model. As shown

below, the flexibility of the ULD allows schema mappings to be expressed directly, without

the need for additional mappings and conversions to a common data model.

Transformation 5 (A DTD-to-RDF-Schema transformation)

mapping schema-1: (Movie elements become film resources.)
c-inst(R, simpleRes), d-inst(R, film), R.hasURI:U, c-inst(U, uldURI) ⇐=

d-inst(M, movie), KM
resource(R), KM

id (U)uldURI .

mapping schema-2: (Thriller movies become thriller-film resources.)
d-inst(R, thriller) ⇐=

d-inst(M, movie), M.hasChildren:C, isSubElement(C, M′), d-inst(M′,genre),
M′.hasChildren:C′, hasPCData(C′, ‘Thriller’), KM

resource(R).

mapping schema-3: (Comedy movies become thriller-film resources.)
d-inst(R, comedy) ⇐=

d-inst(M, movie), M.hasChildren:C, isSubElement(C, M′), d-inst(M′,genre),
M′.hasChildren:C′, hasPCData(C′, ‘Comedy’), KM

resource(R).

127

mapping schema-4: (Title elements become film title triples.)
c-inst(V, literal), c-inst(T, triple), T.hasPred:title, T.hasSubj:R, T.hasObj:V ⇐=

d-inst(M, movie), M.hasChildren:C, isSubElement(C, M′), d-inst(M′,title),
M′.hasChildren:C′, hasPCData(C′, V), KM

resource(R), KM
title(T).

mapping schema-5: (Actor elements become actor resources.)
c-inst(R, simpleRes), d-inst(R, actor), R.hasURI:U, c-inst(U, uldURI) ⇐=

d-inst(A, actor), KA
resource(R), KA

id(U)uldURI .

mapping schema-6: (Actor names become hasName properties.)
c-inst(V, literal), c-inst(T, triple), T.hasPred:hasName, T.hasSubj:R, T.hasObj:V ⇐=

d-inst(A, actor), A.hasChildren:C, hasPCData(C, N), V=toRDFName(N),
KA

resource(R), KA
name(T).

mapping schema-7: (Actor subelements are connected to film resources.)
c-inst(T, triple), T.hasPred:involved, T.hasSubj:Rm, T.hasObj:Ra ⇐=

d-inst(M, movie), M.hasChildren:C, isSubElement(C, A), d-inst(A, actor),
KM

resource(Rm), KA
resource(Ra), KM,A

involved(T).

isSubElement(C, E) ← c-inst(C, fullContent), C.hasNode:E, c-inst(E, element).
isSubElement(C, E) ← c-inst(C, fullContent), C.hasContent:C′, isSubElement(C′, E).

hasPCData(C, D) ← c-inst(C, fullContent), C.hasNode:D, c-inst(D, pcdata).
hasPCData(C, D) ← c-inst(C, fullContent), C.hasContent:C′, hasPCData(C′, D).

4.2.4 Transformations for Standard Serializations

The last transformation (Transformation 6) of this section converts RDF data directly

into XML data. Figure 4.4 gives the result of applying the mapping to the RDF con-

figuration shown in Figure 1.3. The resulting XML document is similar to the standard

RDF serialization in XML [47]. A serialization is, fundamentally, a data-model mapping

in which one data model is used as the interchange format for information expressed in

another data model. One of the most widely used data models for serialization is XML.

For example, both RDF and Topic Maps have multiple XML serializations.

128

<rdf>
<description about="#m1">

<title>The Usual Suspects</title>
<involved resource="#ks"/>
<won resource="#a1"/>

</description>
<description about="#ks">

<hasName>Kevin Space</hasName>
</description>
<description about="#a1">

<recipient resource="#ks"/>
<category>Supporting Actor</category>

</description>
</rdf>

Figure 4.4: The result of applying the RDF serialization mapping.

We note that it is not possible to define an XML DTD for the standard RDF seri-

alization. In particular, the element tags present in an XML document depend on the

property names used in the RDF source. Therefore, one benefit of using the ULD trans-

formation language is that it provides a formal, explicit, and executable definition of the

serialization. In addition, serializations often use a number of conventions and mix data

and schema levels. For example, RDF schema information and instance data are both

mapped to XML elements and attributes (that is, instance data) in the standard RDF

serialization. The flexibility of the ULD enables the specification of these various styles of

mappings that mix data-model, schema, and data levels.

Transformation 6 (An RDF-to-XML serialization)

mapping rdfxml-1: (Generate a document and an RDF root tag.)
c-inst(rdfDoc, doc), c-inst(rdfRoot, element), rdfRoot.hasTag:‘rdf’,
rdfRoot.hasAtts:rdfRootAtts, c-inst(‘rdf’, uldString),
c-inst(rdfRootAtts, emptyContent) ⇐= .

mapping rdfxml-2: (Each resource that is the subject of a triple generates an element.)
c-inst(E, element), E.hasTag:‘description’, c-inst(‘description’, uldString), E.hasAtts:AS,
c-inst(AS, attSet) ⇐=

c-inst(T, triple), T.hasSubj:S, KS
desc(E), KS

attList(AS).

129

mapping rdfxml-3: (Add first subelement of the root.)
rdfRoot.hasChildren:rdfRootContent, c-inst(rdfRootContent, fullContent),
rdfRootContent.hasNode:E ⇐=

c-inst(T, triple), T.hasSubj:S, KS
desc(E), xml/¬c-inst(rdfRootContent, fullContent).

mapping rdfxml-4: (Add remaining subelements of the root.)
C.hasContent:C′, c-inst(C′, fullContent), C′.hasNode:E ⇐=

c-inst(T, triple), T.hasSubj:S, KS
desc(E), findLastContent(rdfRootContent, C),

KS
content(C′).

mapping rdfxml-5: (If every subject has been converted, add empty content.)
C.hasContent:C′, c-inst(C′, emptyContent) ⇐=

¬existsSubjNotConverted(rdfRootContent), findLastContent(rdfRootContent, C),
Kemptycont(C′).

mapping rdfxml-6: (Add the subject resource URI as an attribute.)
E.hasAtts:AS, c-inst(AS, attSet), A∈AS, c-inst(A, attribute), A.hasName:‘about’,
c-inst(‘about’, uldString), A.hasVal:U, c-inst(U, cdata) ⇐=

c-inst(T, triple), T.hasSubj:S, S.hasURI:U, KS
desc(E), KS

attSet(AS), KS
attribute(A).

mapping rdfxml-7: (Generate first subelement of subject element.)
E.hasChildren:C, c-inst(C, fullContent), C.hasNode:E′, c-inst(E′, element), E′.hasTag:U,
E′.hasAtts:AS, c-inst(AS, attSet), E′.hasContent:Cp, c-inst(Cp, fullContent), Cp.hasNode:O,
c-inst(O, pcdata), Cp.hasContent:Ce, c-inst(Ce, emptyContent) ⇐=

c-inst(T, triple), T.hasSubj:S, T.hasPred:P, P.hasURI:U, T.hasObj:O,
c-inst(O, literal), KS

desc(E), KS
children(C), xml/¬c-inst(C, fullContent), KS,P,O

element(E
′),

KS,P,O
predicate(Cp), KS,P,O

empty(Ce), KS,P,O
attSet(AS).

mapping rdfxml-8: (Generate first subelement of subject element.)
E.hasChildren:C, c-inst(C, fullContent), C.hasNode:E′, c-inst(E′, element), E′.hasTag:Up,
E′.hasAtts:AS, c-inst(AS, attSet), A∈AS, c-inst(A, attribute), A.hasName:‘resource’,
c-inst(‘resource’, uldString), A.hasVal:Uo, c-inst(Uo, cdata), E′.hasContent:C′,
c-inst(C′, emptyContent) ⇐=

c-inst(T, triple), T.hasSubj:S, T.hasPred:P, P.hasURI:Up, T.hasObj:O, O.hasURI:Uo,
KS

desc(E), KS
children(C), xml/¬c-inst(C, fullContent), KS,P,O

element(E
′), KS,P,O

empty(C′),
KS,P,O

attSet(AS), KS,P,O
object(A).

mapping rdfxml-9: (Generate remaining subelements of subject element.)
C.hasContent:C′, c-inst(C′, fullContent), C′.hasNode:E′, c-inst(E′, element), E′.hasTag:U,

130

E′.hasAtts:AS, c-inst(AS, attSet), E′.hasContent:Cp, c-inst(Cp, fullContent), Cp.hasNode:O,
c-inst(O, pcdata), Cp.hasContent:Ce, c-inst(Ce, emptyContent) ⇐=

c-inst(T, triple), T.hasSubj:S, T.hasPred:P, P.hasURI:U, T.hasObj:O,
c-inst(O, literal), KS

desc(E), KS
children(C), findLastContent(C, C′), KS,P,O

element(E
′),

KS,P,O
predicate(Cp), KS,P,O

empty(Ce), KS,P,O
attSet(AS).

mapping rdfxml-10: (Generate remaining subelements of subject element.)
C.hasContent:C′, c-inst(C′, fullContent), C′.hasNode:E′, c-inst(E′, element), E′.hasTag:Up,
E′.hasAtts:AS, c-inst(AS, attSet), A∈AS, c-inst(A, attribute), A.hasName:‘resource’,
c-inst(‘resource’, uldString), A.hasVal:Uo, c-inst(Uo, cdata), E′.hasContent:C′,
c-inst(C′, emptyContent) ⇐=

c-inst(T, triple), T.hasSubj:S, T.hasPred:P, P.hasURI:Up, T.hasObj:O, O.hasURI:Uo,
KS

desc(E), KS
children(C), findLastContent(C,C′), KS,P,O

element(E
′), KS,P,O

empty(C′),
KS,P,O

attSet(AS), KS,P,O
object(A).

mapping rdfxml-11: (If every triple has been converted, add empty content.)
C′.hasContent:Ce, c-inst(Ce, emptyContent) ⇐=

c-inst(T, triple), T.hasSubj:S, ¬existsTripleNotConverted(S), KS
desc(E),

xml/E.hasContent:C, findLastContent(C, C′), KS
emptycont(Ce).

existsSubjNotConverted(C) ← xml/c-inst(C, fullContent), c-inst(T, triple), T.hasSubj:S,
KS

desc(E), ¬isSubElement(C, E).

existsTripleNotConverted(S) ← c-inst(T, triple), T.hasSubj:S, KS
desc(E), E.hasContent:C,

T.hasPred:P, T.hasObj:O, KS,P,O
e lement(E′), ¬isSubElement(C, E′).

isSubElement(C, E) ← xml/c-inst(C, fullContent), xml/C.hasNode:E,
xml/c-inst(E, element).

isSubElement(C, E) ← xml/c-inst(C, fullContent), xml/C.hasContent:C′,
xml/isSubElement(C′, E).

findLastContent(C1, C1) ← xml/c-inst(C1, fullContent), ¬hasFilledContent(C1).
findLastContent(C1, C3) ← xml/c-inst(C1, fullContent), xml/C1.hasContent:C2,

xml/¬ c-inst(C2, emptyContent), findLastContent(C2, C3).

hasFilledContent(C) ← xml/c-inst(C, fullContent), xml/C.hasContent:C′.

131

4.3 Analyzing ULD Transformations

We consider two applications of reasoning for ULD mapping rules. By reasoning, we

mean analyzing mapping rules prior to their execution using ULD axioms and data-model

constraints. The first application we consider ensures that a mapping rule is correct,

that is, the resulting target configuration does not violate the ULD axioms and data-

model constraints. The second application of reasoning is directed at helping a user define

a transformation. In particular, we want to exploit the ULD axioms and data-model

constraints to “fill-out” incomplete mapping rules. As an ambitious example, a user

may specify that E-R entity types should be mapped to relations in the relational model

without giving the details of such a mapping, where the rest of the mapping is filled in by

a reasoning system. (Note that similar approaches exist for schema mappings [68] and we

consider only simple cases of the more general problem in this chapter.)

This section focuses on ensuring mapping rules are correct with respect to ULD axioms

and briefly discusses the use of data-model constraints for both ensuring correctness and

elaborating partial mapping rules.

4.3.1 Well-Typed Transformations

Here we describe a structural approach for verifying that a transformation is well-typed.

Based on the axioms of the ULD (from Chapter 2), we define a set of rules to annotate

variables used in mapping rules with type information, and then use this type information

to verify that a transformation is well-formed (with respect to the types).

Our overriding goal is to ensure that a transformation will result in a consistent target

configuration and notify the user if the transformation can produce an inconsistent result

(or in general, if a mapping rule is not well-formed). We only consider individual mapping

rules. In general, a transformation should be considered as a whole; each individual map-

ping rule can be consistent, but when taken together, they may not produce a consistent

transformation.4

4Note that the converse is not true, that is, if a mapping rule can produce an inconsistent configuration,
it is not possible to construct another mapping rule to make the configuration consistent. Intuitively, a
configuration is inconsistent if it asserts a fact that violates a ULD or data-model constraint. Therefore,

132

A mapping rule is inconsistent if it can produce target facts that violate ULD axioms

or data-model constraints. We also consider whether the body of a mapping rule can be

satisfied, that is, whether it is possible to construct a valid configuration that produces a

variable assignment for the rule (or for rule bodies that do not contain variables, whether

they are false for every possible configuration). No updates will result from executing a

mapping rule with a rule body that is not satisfiable. This mapping rule is not considered

well-formed even though it does not produce an inconsistent target configuration.

Checking for well-typed mapping rules does not guarantee that a mapping rule pro-

duces a consistent target configuration, only that the result is consistent with respect to

typing constraints. For example, consider the following mapping rule (Example 11), which

maps E-R attributes to relations in the relational data model.

Example 11 (A well-typed transformation rule)

c-inst(T, relation), T.hasName:N, c-inst(N, uldString) ⇐=

c-inst(A, attribute), A.hasName:N, KA(T).

This rule is considered well-typed (which we define below) and thus is valid with respect

to typing. However, the target configuration generated from the rule may not be con-

sistent. In particular, multiple attributes with the same name are allowed in the source

configuration (which uses an E-R data model), however, each relation in the target config-

uration (a relational data model) must contain a unique name. Therefore, if there is more

than one attribute with the same name in the source, the resulting target configuration

will be inconsistent with respect to the relational data-model constraint (hasName keyOf

relation).

The type annotation rules in Figures 4.5, 4.6, and 4.7 are used to determine the types of

variables and constants in a mapping rule. If the antecedent of a rule holds (the expression

above the line), the type annotation in the consequent of the rule is asserted (the expression

below the line). A type annotation takes the form c/v :: t, which states that v, a variable

such a fact would need to be removed from the configuration to make it consistent, and it is not possible
to remove facts from a configuration using the ULD transformation language.

133

or constant in the mapping rule, has type t in configuration c. An expression such as c/c-

inst(x, p) (for x and p constants or variables and c a configuration name) in an annotation

rule is matched against a similar expression in a mapping rule. (Note that we assume

the default source and target configurations if the configuration name is not given, as in

the previous example.) For example, the formula rel/c-inst(T, relation) in the previous

mapping rule (Example 11) would match the expression c/c-inst(x, p) in a type annotation

rule, where x is unified with T, p is unified with the constant ‘relation’, and c is unified

with the (default) configuration rel.

Type annotation rules may also use data-model information from a configuration to

annotate variables and constants. Data-model information is accessed using expressions of

the form c |= b, which are true if the variables of a formula b can be unified in configuration

c. The expression c |= b is essentially a ULD query, which finds a variable assignment

for b in configuration c through unification. Data-model expressions can require certain

terms to be ground prior to their application. For example, the expression c |= ct-inst(p∗,

s) requires p to be either a constant, or a variable unified with a constant.

Type annotation rules are repeatedly applied to each formula in a mapping rule until

no additional types are generated. That is, annotation rules are applied until a fixpoint

is reached. We note that this approach to typing is similar to the system of Mycroft and

O’Keefe [58], which was developed specifically for logic programming in Prolog. We note

that the Mycroft and O’Keefe type system is considerably more complex, for example,

formulas are annotated with types in addition to variables and constants.

We permit variables and constants to be annotated with construct-type and construct

identifiers. That is, the set of permissible types for a source or target formula in a mapping

rule consists of the ULD construct types and the constructs defined in the source or

target configuration, respectively. Intuitively, if a variable in a mapping rule ranges over

constructs, the variable is annotated with the appropriate construct type. Similarly, if a

variable in a mapping rule ranges over construct instances, the variable is annotated with

the appropriate construct. (Note that as an extension, we could also consider annotating

construct instances with other construct instances according to conformance and d-inst

relationships.)

134

(1)
c/ct-inst(p, s)

c/p :: s

(2)
c/c-inst(x, p)

c/x :: p

(3)
c/c-inst(x, p), c |= ct-inst(p∗, s)

c/p :: s

(4)
c/x.s:y, c/x :: p, c |= p∗.s∗->q

c/y :: q

(5)
c/d-inst(x, y), c/x :: p, c |= conf(p∗, q, d, r)

c/y :: q

(6)
c/y :: q, c |= unionof(p, q∗)

c/y :: p

Figure 4.5: The basic type annotation rules for mappings.

(7)
c/y ∈ x, c/x :: p, c |= setof(p∗, q)

c/y :: q

(8)
c/y ∈ x, c/x :: p, c |= listof(p∗, q)

c/y :: q

(9)
c/y ∈ x, c/x :: p, c |= bagof(p∗, q)

c/y :: q

(10)
c/x[i] = y, c/x :: p, c |= listof(p∗, q)

c/y :: q

(11)
c/y∈∈x=l, c/x :: p, c |= bagof(p∗, q)

c/y :: q

Figure 4.6: The collection type annotation rules for mappings.

135

(12)
c/x[i] = y

c/i :: uldInteger (13)
c/|x| = l

c/l :: uldInteger

(14)
c/y∈∈x = l

c/l :: uldInteger (15)
c/x.s:y

c/s :: uldString

(16)
c/p.s->q

c/s :: uldString (17)
c/conf(p, q, d, r)
c/d :: uldString

(18)
c/conf(p, q, d, r)
c/r :: uldString (19)

Kv1,...,vn
l (v)t

v :: t

Figure 4.7: The selector, conformance-cardinality, and identifier-generation type annota-
tion rules for mappings.

The first type annotation rule states that, if p (a constant or variable) is a ct-inst of s

(expressed as a formula in a mapping rule), the type of p is s. The second rule states that

if x is a c-inst of p, the type of x is p. The third rule accesses data-model information for

the case when a ct-inst relation is not explicitly given in the mapping rule. To illustrate,

the following annotations result from applying the second and third rules to the previous

mapping (Example 11).

er/A :: attribute
er/attribute :: struct-ct
er/uldString :: atomic-ct
rel/T :: relation
rel/N :: uldString
rel/relation :: struct-ct
rel/uldString :: atomic-ct

The fourth typing rule follows from axiom 27 (of Chapter 2) and states that the type of

a component-selector value is the type of the corresponding component-definition value.

To apply this annotation rule to the previous mapping, we must obtain the component

definition in the corresponding source configuration. Applying the rule to the mapping in

Example 11 adds the type annotation er/N :: uldString.

136

The fifth annotation rule follows from axiom 2 and 22 (as discussed in Chapter 2).

Namely, we can use the conformance relationship in a configuration to determine the

type of the construct instance serving as schema in a d-inst relationship. The sixth

annotation rule enumerates union types. Rules seven through eleven assign collection

types to members. Rules twelve through fourteen associate the index of a list, length

of a collection, and number of repeated bag elements, respectively, to an integer atomic

type. Rules fifteen and sixteen assign an atomic type to selectors; and rules seventeen

and eighteen assign atomic types to conformance cardinality constraints. Finally, rule

nineteen associates an atomic type (such as uldURI) to a generated identifier, if such

an atomic type is given. Note that we do not specify a particular configuration for the

generated identifier’s type. Instead, we treat the type annotation as being applicable in

any configuration in which the variable is used.

Once type annotations for a mapping rule are determined, we use the typing rules in

Figure 4.8 to check for well-typed mappings. The typing rules are expressed using first-

order logic and differ from the annotation rules in that they define constraints that must

be satisfied for the mapping to be well-typed. The typing rules use notation similar to

annotation rules, namely, the expression c/b is matched against formulas in the mapping,

and the expression c |= b is matched against data-model information.

The first five typing rules require component selectors, d-inst expressions, membership

expressions, list index expressions, and bag membership expressions, respectively, to be

well-typed. The sixth rule requires every variable or constant with multiple types to

have at least one non-union type. The seventh rule requires at most one such non-union

type for each variable or constant. The eighth rule requires each type for variables or

constants with more than one type to be related through a union definition. Note that

the unionConnected constraint is defined by axiom 57 of Chapter 2. The ninth rule states

that every variable and constant in a mapping rule (with a type annotation) has a ground

type (that is, the type is either a variable with a known assignment or a constant). We

assume the ground function returns true if its argument is ground, and false otherwise.

Finally, the last typing rule restricts variables and constants with more than one distinct

atomic-ct type (regardless of the configuration) to be type compatible. For example,

137

(i) ∀(c, x, s, y) (c/x.s:y) → ∃(p, q) (c/x :: p) ∧ (c/y :: q) ∧ (c/s :: uldString) ∧
(c |= p.s->q)

(ii) ∀(c, x, y) (c/d-inst(x, y)) → ∃(p, q, d, r) (c/x :: p) ∧
(c |= conf(p, q, d, r)) ∧ (c/y :: q) ∧ (c/d :: uldString) ∧ (c/r :: uldString)

(iii) ∀(c, x, y) (c/y∈x) → ∃(p, q) (c/x :: p) ∧
[c |= (setof(p, q) ∨ listof(p, q) ∨ bagof(p, q))] ∧ (c/y :: q)

(iv) ∀(c, x, y, i) (c/x[i]=y) → ∃(p, q) (c/x :: p) ∧ (c |= listof(p, q)) ∧ (c/y :: q) ∧
(c/i :: uldInteger)

(v) ∀(c, x, y, l) (c/y∈∈x=l) → ∃(p, q) (c/x :: p) ∧ (c |= bagof(p, q)) ∧ (c/y :: q) ∧
(c/l :: uldInteger)

(vi) ∀(c, v, t1, ..., tn) (c/v :: t1) ∧ (c/v :: t2) ∧ ... (c/v :: tn) → ∃(i) (1 ≤ i ≤ n) ∧
(c |= ¬ct-inst(ti, union-ct))

(vii) ∀(c, v, t1, t2) (c/v :: t1) ∧ (c/v :: t2) ∧ (c |= ¬ct-inst(t1, union-ct)) ∧
(c |= ¬ct-inst(t2, union-ct)) → (t1=t2)

(viii) ∀(c, v, t1, t2) (c/v :: t1) ∧ (c/v :: t2) ∧ (t1 $= t2) → unionConnected(t1, t2)

(ix) ∀(c, v, t) (c/v :: t) → ground(t)

(x) ∀(c1, c2, v, t1, t2) (c1/v :: t1) ∧ (c2/v :: t2) ∧ (c1 |= ct-inst(t1, atomic-ct)) ∧
(c2 |= ct-inst(t2, atomic-ct)) → atomicCompatible(t1,t2)

Figure 4.8: The typing rules for ULD mappings.

pcdata and uldString are compatible atomic types whereas uldInteger and uldString

are not. Note that, in the ULD, we do not provide an explicit mechanism for defining

atomic-type compatibility, however, we assume that compatibility can be computed, for

example, based on an external description.

To illustrate the use of typing rules, consider the following mapping rule that attempts

to map E-R entities to relations in the relational data model. Using the type annotation

rules, the variable AS is annotated with the construct attSet, which is defined as a set-ct

construct in the E-R data model. However, the formula AS.hasName:N in the body of

the rule treats AS as though it were a struct-ct construct. This formula violates the first

typing rule in Figure 4.8, which states that a formula x.s:y is valid if the type of x has a

component-selector definition for s. Here, since attSet is a set construct, the type for AS

cannot have a component-selector definition.

c-inst(T, relation), T.hasName:N ⇐=

138

c-inst(E, entity), d-inst(E, T), T.hasAtts:AS, AS.hasName:N.

Similarly, the following mapping rule is also not well-typed. Unlike the previous ex-

ample, the following mapping may result in an inconsistent target configuration, because

the variable T in the head of the mapping rule is annotated with the two types, relation

and attList, neither of which are union constructs (violating the seventh typing rule in

Figure 4.8.)

c-inst(T, relation), T.hasAtts:AS, c-inst(T, attList) ⇐=

c-inst(E, entity), d-inst(E, T), T.hasAtts:AS.

Finally, while not discussed here, the annotation and typing rules can also be ap-

plied directly to mapping rules that use an intensional formula. For mapping rules that

use intensional formulas, we can determine type annotations by recursively applying the

annotation rules to the variables and constants of the Datalog rules that define the inten-

sional predicate. In other words, the type annotation rules can be directly applied to the

Datalog rules that construct intensional predicates in a transformation.

4.3.2 Mapping Rules and Data-Model Constraints

Constraint macros offer a class of data-model constraints that can be used directly to

determine whether a mapping rule is satisfiable with respect to the available constraint

macros. Because there are a finite number of constraint macros, we can define specific

procedures for each macro to check whether a mapping violates a target configuration.

Here we consider configuration-based uniqueness constraints, which take the form (p1,

p2, ..., pn keyOf c), where n ≥ 1 and c is a struct-ct construct (or possibly a union-ct

construct). Given a mapping rule h ⇐= b, where h and b each consist of one or more

formulas, executing the rule may result in an inconsistent target configuration if each of

the following conditions hold.

1. A set of component-selector formulas are present in the head of the rule, where

each target formula originates from the same variable or constant x in configuration

ft, and the selectors represent a configuration-based uniqueness constraint. That is,

139

{ft/x.pt1:vt1, ft/x.pt2:vt2, ..., ft/x.ptn:vtn} ⊆ h, ft/x :: ct, and (pt1, pt2, ..., ptn keyOf

ct) is a constraint in ft.

2. A set of component-selector formulas are present in the body of the rule, where each

formula originates from the same variable or constant y in configuration fs, such that

y is mapped to x and each selector value of y is mapped to a corresponding selector

value for x. That is, {fs/y.ps1:vs1, fs/y.ps2:vs2, ..., fs/y.psn:vsn} ⊆ b, and y=x or

Ky
l (x), vs1=vt1 or Kvs1

l1
(vt1), vs2=vt2 or Kvs2

l2
(vt2), ..., and vsn=vtn or Kvsn

ln
(vtn).

3. The type of y in (2) does not have a corresponding configuration-based uniqueness

constraint. That is, fs/y :: cs, and (p1, p2, ..., pm keyOf cs) is not a constraint in fs

such that {ps1, ps2, ..., psn} ⊆ {p1, p2, ..., pm}.

To illustrate the use of these conditions, consider the following mapping rule (taken from

Example 11).

c-inst(T, relation), T.hasName:N, c-inst(N, uldString) ⇐=

c-inst(A, attribute), A.hasName:N, KA(T).

As previously mentioned, the mapping rule may result in an inconsistent target configura-

tion because relation names are required to be unique, whereas attribute names are not.

The following shows that each of the previous conditions hold for the rule, and thus, the

mapping may result in an inconsistent target configuration. (Note that the rule results in

an inconsistent target configuration only if there is more than one attribute in the source.)

1. {rel/T.hasName:N} ⊆ h, rel/T :: relation, and (hasName keyOf relation) is a con-

straint in rel.

2. {er/A.hasName:N} ⊆ b, KA(T), and N=N.

3. rel/A :: attribute and (hasName keyOf attribute) is not a constraint in er.

We note that checking constraint satisfiability for mapping rules requires (1) propagat-

ing constraints surrounding formulas in the body of the rule to formulas in the head of the

140

rule, and (2) ensuring that the propagated constraints do not violate the constraints asso-

ciated with the target data models. For arbitrary ULD data-model constraints expressed

using stratified Datalog¬, checking constraint satisfiability requires checking query satis-

fiability [50, 67] (that is, checking that the target query, the propagated constraints, and

the existing constraints are satisfiable), which in general is undecidable [50, 51]. However,

a number of useful constraints can still be exploited, such as the uniqueness constraint

shown here.

4.3.3 Cardinality Constraints on Conformance

Similar to constraint macros, we can use cardinality constraints on conformance relation-

ships to determine whether a mapping rule can generate an inconsistent target configura-

tion. Here, we briefly sketch the approach. Consider the following mapping rule (changed

slightly from er-rel-8 to make it inconsistent).

c-inst(P, tuple), c-inst(B, table), P∈B, d-inst(P, R) ⇐=

c-inst(E, entity), d-inst(E, T), KE
tuple(P), KT

table(B), KT
relation(R).

As shown, the rule generates a relational tuple for every entity in an E-R configuration.

This mapping rule can result in an inconsistent target configuration. In particular, the

E-R data model permits entities to be instances of multiple entity types, whereas the

relational model requires a tuple to be an instance of exactly one type.

The following type annotations are generated for the mapping rule.

er/E :: entity

er/T :: entityType

rel/P :: tuple

rel/R :: relation

rel/B :: table

In addition, the formula d-inst(E, T) in the body of the rule and the formula d-inst(P,

R) in the head of the rule assert that E is a data instance of T, and P is a data instance

of R. We also know from the formulas KE
tuple(P) and KT

relation(R) that E generates the

141

identifier P, and T generates the identifier R. Therefore, the cardinality restriction on the

conformance relationship between entities and entity types must not violate the cardinality

restriction on the conformance relationship between tuples and relations.

The following definitions are taken from the data-model descriptions in Chapter 3 and

state the conformance cardinality constraints for E-R entities and relational tuples. As

shown, tuples must be data instances of exactly one relation, however, entities can be data

instances of any number of entity types. Thus, the conformance constraint in the head of

the mapping rule may be violated by the conformance constraints in the body of the rule.

construct tuple = list of uldValue conf(domain=*,range=1):relation

construct entity = {hasProps->propSet} conf(domain=*,range=*):entityType

In this case, the cardinality restriction in the head of the rule forms a specific uniqueness

constraint that may be violated by the body of the rule. The following mapping, however,

is satisfiable with respect to cardinality constraints on conformance. This mapping is

exactly er-rel-8.

c-inst(P, tuple), c-inst(B, table), P∈B, d-inst(P, R) ⇐=

c-inst(E, entity), d-inst(E, T), KE,T
tuple(P), KT

table(B), KT
relation(R).

4.3.4 Inference and Transformation

We end this chapter by giving a simple example of automatically filling-in partial mapping

rules using ULD axioms. We then briefly outline how a general approach might proceed

when additional constraints are considered.

The following (Example 12) is a simple example of a partial mapping rule. In partic-

ular, the mapping rule does not specify what the variable N is an instance of. The rule is

well-typed, but can result in an inconsistent target configuration because every identifier

(in this case N), other than a construct type, must be defined as a construct or a construct

instance. In this case, the formula c-inst(N, uldString) should be added to the head of the

rule.

142

Example 12 (A partial mapping rule)

c-inst(R, relation), R.hasName:N ⇐= c-inst(T, entityType), T.hasName:N.

We use the following elaboration rules to fill-in c-inst relationships in partial mappings.

The rules are similar to the type annotation rules of Figure 4.8 in that they are applied

directly to mapping rules. However, instead of annotating constants and variables with

types, an elaboration rule adds a c-inst formula to the head of a mapping rule. An

elaboration rule takes the form if h then c/c-inst(x,p), where h is a list of formulas and c

is a target configuration. If the set of formulas h can be unified with the head of a mapping

rule and data-model information from a configuration (rule eleven is a special case that

we describe below), the formula c/c-inst(x,p) is added to the head of the mapping rule if

it is not already present. Note that the elaboration rules below rely on type annotations

and data-model information.

(1). if c/x.s:y, c/x :: p, c |= p∗.s∗->q then c/c-inst(y, q)

(2). if c/d-inst(x,y), c/x :: p, c |= conf(p∗, q, d, r) then c/c-inst(y, q)

(3). if c/y :: q, c |= unionof(p, q∗) then c/c-inst(y, p)

(4). if c/y∈x, c/x :: p, c |= setof(p∗, q) then c/c-inst(y, q)

(5). if c/y∈x, c/x :: p, c |= listof(p∗, q) then c/c-inst(y, q)

(6). if c/y∈x, c/x :: p, c |= bagof(p∗, q) then c/c-inst(y, q)

(7). if c/x[i] = y, c/x :: p, c |= listof(p∗, q) then c/c-inst(y, q)

(8). if c/y∈∈x=l, c/x :: p, c |= bagof(p∗, q) then c/c-inst(y, q)

(9). if c/x[i] = y then c/c-inst(i, uldInteger)

(10).if c/y∈∈x=l then c/c-inst(l, uldInteger)

(11).if Kv1,...,vn
l (v)t then c/c-inst(v, t)

Each elaboration rule is applied directly to formulas in the head of the mapping except

for the last rule (which is a special case). In particular, the last rule is matched against

formulas in the body of the mapping and is only applied if v is used in a formula in the

head of the mapping.

143

To illustrate, each formula in the consequent of the first elaboration rule holds for

the mapping in Example 12. That is, T.hasName:N (from the rule body), T::entityType

(from the annotation rule), and entityType.hasName->uldString (from the configuration)

are each true. Thus, the formula in the consequent of the elaboration-rule, c-inst(N,

uldString), is added to the head of the mapping.

Finally, we consider the more general case of filling in partial mapping rules (as op-

posed to filling in only missing c-inst relationships, as above). Here, the goal is to allow a

user to specify an initial correspondence assertion [64]—for example, that E-R entity types

should be mapped to relations in the relational model—and based on the correspondence

enumerate the remaining details of the mapping. In general, it is not possible to automat-

ically define the desired mapping: (1) at some point, component selector labels must be

unified, and (2) data-model constraints must be used to determine the validity of and help

fill-in mappings, which is not a decidable problem for all constraints expressed in stratified

Datalog¬ (as discussed above). Instead of automatically generating the filled-in mapping,

we sketch a procedure to fill in many, but potentially not all, details of the mapping.

The following is a list of approaches that can elaborate an initial mapping rule. Note

that each approach below would be repeatedly applied to each formula in a single mapping

rule h ⇐= b (until a fixed-point is reached), where both h and b consist of one more

formulas. For example, given the statement “E-R entity types should be mapped to

relations in the relational model,” we would construct the initial mapping rule c-inst(E,

relation) ⇐= c-inst(E, entityType), and apply the following techniques to fill the rule in.

Structural Elaboration Given a formula c/c-inst(x, p) in either h or b (of the mapping

rule) where ct-inst(p, struct-ct) is in configuration c, we can add the formulas c/x.s:t

and c/c-inst(y, q) to h or b (where s and q are constants and t is a variable),

respectively, whenever y.s->q is in c. We call this approach structural elaboration,

because each component-selector definition must have a corresponding value in a

construct instance.

Conformance Elaboration Given a formula c/c-inst(x, p) in either h or b where conf(p,

144

q, d, r) is in c and r is either ‘1’ (exactly one) or ‘+’ (one or more), we add the for-

mulas c/d-inst(x, y) and c/c-inst(y, q) to h or b, respectively (where q is a constant

and y is a variable). Similarly, given a formula c/c-inst(y, q) in either h or b where

conf(p, q, d, r) is in c and d is either ‘1’ (exactly one) or ‘+’ (one or more), we add

the formulas c/d-inst(x, y) and c/c-inst(x, p) to t or bm, respectively (where p is a

constant and x is a variable). We call this approach conformance elaboration, be-

cause each construct instance with a required cardinality constraint on conformance

requires an instance of (or a type for) at least one other construct instance.

Constraint Elaboration Given the constraint e1, ..., ei ⇐ bc1, ..., bcj in configuration c,

we can add the formulas c/e1, ..., c/ei to h if {c/bc1, ..., c/bcj} ⊆ h with variable and

constant substitution. In other words, if the body of the constraint matches (with

unification) a subset of formulas in the head of the mapping rule, the constraint

formulas e1 to ei are added (with variable substitution) to the head of the mapping

rule. This technique can be similarly applied to the body of the mapping rule. We

call this approach constraint elaboration, because we add information to the mapping

based on available constraints.

The following six steps illustrate how the elaboration approaches above can be used to

fill-in the initial mapping rule c-inst(E, relation) ⇐= c-inst(E, entityType). Once the rule

is fully elaborated (the result of step 6), the user must still state the connection between

identifiers, for example, that the relation name and the entity name should be the same

(N1 and N2 below).

Step 1. Apply the initial mapping rule.

c-inst(E, relation) ⇐= c-inst(E, entityType).

Step 2. Apply structural elaboration to the result of step 1 to obtain the following rule.

c-inst(E, relation), E.hasName:N2, E.hasAtts:AL ⇐=

c-inst(E, entityType), E.hasName:N1, E.hasAtts:AS.

145

Step 3. Apply conformance elaboration to the result of step 2 to obtain the following

rule.

c-inst(E, relation), E.hasName:N2, E.hasAtts:AL, d-inst(B, E), c-inst(B, table) ⇐=

c-inst(E, entityType), E.hasName:N1, E.hasAtts:AS.

Step 4. Apply constraint elaboration to the result of step 3 to obtain the following rule.

Here, we apply the E-R constraint (er-36): A∈AS ⇐ c-inst(E, entityType), E.hasAtts:AS.

c-inst(E, relation), E.hasName:N2, E.hasAtts:AL, d-inst(B, E), c-inst(B, table) ⇐=

c-inst(E, entityType), E.hasName:N1, E.hasAtts:AS, A1∈AS.

Step 5. Apply constraint elaboration to the result of step 4 to obtain the following

rule. Here, we apply the relational constraint (rel-1): (attList isNonEmpty). Note that the

constraint macro is expanded to an expression in the ULD constraint language prior to

its application.

c-inst(E, relation), E.hasName:N2, E.hasAtts:AL, d-inst(B, E), c-inst(B, table),

A2∈AL, c-inst(A2, attribute) ⇐=

c-inst(E, entityType), E.hasName:N1, E.hasAtts:AS, A1∈AS.

Step 6. Apply structural elaboration to the result of step 5 to obtain the following rule,

which is the fixed-point.

c-inst(E, relation), E.hasName:N2, E.hasAtts:AL, d-inst(B, E), c-inst(B,table),

A2∈AL, c-inst(A2, attribute), A2.hasName:N4, A2.hasDomain:D2 ⇐=

c-inst(E, entityType), E.hasName:N1, E.hasAtts:AS, A1∈AS, A1.hasName:N3,

A1.hasDomain:D1.

4.4 Summary

In this chapter, we described the ULD transformation language for converting informa-

tion between data models, schemas, and instance data. We used the language to describe

146

standard data-model mappings, including E-R-to-relational and XML-to-relational trans-

formations. We also used the transformation language to express a schema mapping,

where the source and target configurations are represented in distinct data models. Fi-

nally, we outlined a number of approaches to ensure transformation mappings are valid,

and described two simple approaches to elaborate partial transformation rules.

We have used the ULD transformation language to implement a number of mappings.

We briefly describe our experience using the language here. In Chapter 6, we discuss

ULD implementation issues, including transformation. We note that, in general, there

are a number of opportunities for optimizing transformations, which we do not consider

in this dissertation (see Section 6.1). However, based on our experience, we believe that

transformation can be practically implemented using existing languages such as Prolog.

Our first experiments with transformation were done within the context of superim-

posed information models [36, 37]. Our goal was to enable interoperability for model-based

tools. By model-based, we mean a tool that works for any valid information represented

in a particular data model, as opposed to a tool that relies on a particular schema (in a

particular data model). By defining and executing data-model mappings, our goal was

to allow a user to select data of interest independently from the tool they wish to use.

Thus, a user would be free to use their favorite tool over data represented in an arbitrary

data model. We defined and executed a number of mappings (using Prolog) for converting

information represented in the SLIMPad data model [16, 37] to information represented in

the RDF and Topic-Map data models. The SLIMPad data model uses simple tree-based

structures for storing data, similar to XML. We note that in these mappings, source con-

figurations were small in size, the mapping rules did not require recursion or negation,

and the transformations did not define one-to-one data-model conversions.

We also defined and executed schema mappings, where the source and target schemas

were represented using different data models (XML and Topic Maps, respectively). These

experiments used larger data sets, where each source configuration contained between

eight- and twelve-thousand ULD facts. Each XML source contained metadata for a par-

ticular section of an on-line course, such as the section’s slides (where each slide was

considered an addressable, external resource), audio-video files, homework assignments,

147

reading assignments, and so on. The XML files were used to build an HTML version of

an on-line course. However, the XML files were not convenient for course developers who

wished to reuse slides and other materials when developing new courses or updating exist-

ing courses. The goal of the target Topic-Map schema was to serve as a simple, conceptual

model that course developers could navigate (using a Topic-Map browser) to easily find

material of interest.

We originally implemented these mappings using Prolog, however, as the size of the

source configurations increased, the system became slow for mapping rules with recursion

and negation. (Note that only a few mapping rules used recursion.) Based on these

results, we developed a prototype system, written in Java, that stored configurations in

a relational database as opposed to a file of Prolog facts. We defined a relational schema

to represent the ULD facts and converted mapping rules to embedded SQL programs.

(Mapping rules with recursion and negation were converted to embedded SQL by hand.)

Using SQL and storing configurations in a relational database improved the overall speed

of executing the transformation rules.

Finally, we also used the ULD transformation language to execute schema mappings

where the source and target configurations were both expressed using XML. The two

schemas described similar intrusion-detection information, for example, that would be

generated by an intrusion-detection system, and served as interchange formats for use

in other security applications. The schemas contained various forms of structural het-

erogeneity (at the schema level), including different representations for data as well as

structural and schematic heterogeneity. Using the ULD transformation language, we were

able to declaratively describe the schema mapping, and using Prolog, execute the mapping

directly to convert data between the schemas.

Chapter 5

Incremental Navigation

Like transformation, navigation is an application of the ULD. The goal of navigation is

to provide generic access to structured information, much like a Web browser provides

generic access to viewable information. We are particularly interested in browsing a data

source where type information (if available) and structural relationships among the data

items can be viewed in a step-by-step manner, where a user can select an item, select a

path that leads from the item, follow the path to a new item, and so on, incrementally

through the source. The need for incremental navigation is motivated by the following

uses. First, we believe that simple browsing tools provide people with a powerful and easy

way to become familiar with an information source. Additionally, having generic access

to heterogeneous sources supports exploration tools used in the process of integration

[25, 34]. In particular, once an information source has been identified, its contents can be

examined (by a person or an agent) to determine if and how it should be combined (or

integrated) with other sources.

In this section, we describe a generic set of incremental navigation operators that are

implemented against the ULD, which enables various styles of browsing across a wide range

of data models. In addition, the ULD provides multiple ways to specify how navigation

operators should work with various data models. We consider both a low-level approach

for creating detailed and complete specifications as well as a simple, high-level approach

for semi-automating each operator’s implementation.

148

149

5.1 Motivating Examples

Incremental navigation can help an information agent (such as a crawler) or a person to

become familiar with a new data source. When an information agent discovers a new

source (that uses the schema, for example, in Figure 1.3), it may wish to know: (1) what

data model is used (that is, is it an RDF, XML, Topic Map, or relational source?), (2)

assuming RDF is used, whether any classes are defined for the source (what is the source

schema?), (3) which properties are defined for a given class (what properties does the

film class have?), (4) which objects exist for the class (what are the instances of the film

class?) and (5) what kinds of values exist for a given property of a particular object of the

class (what actor objects are involved in this film object?). The agent moves step-by-step

through the source to gather information. It starts by determining what kind of source it

is, and moves down through the schema to individual data items, following their links to

other items.

This example assumes the user (or agent) understands the data model of the source.

For example, the agent begins navigation by asking the source which RDF classes it stores.

If the data model used was XML instead of RDF, the agent (assuming it understands the

XML model) could have started navigation by asking for all of the available element

types. We call this approach data-model-aware browsing, in which the constructs of the

data model can be used to guide navigation.

We primarily focus in this chapter on providing incremental navigation to users who

may not understand the underlying representation scheme (although we do consider data-

model-aware browsing as well). We call this direct browsing, because the data and schema

items of the source are navigated directly. Using direct browsing, our previous example

would change as follows. Upon discovering an information source, the crawler might wish

to know: (1) what kind of information the source contains, which (in our example) would

include “films,” “actors,” and “awards,” etc., (2) (assuming the crawler is interested in

films) the things that describe films, which would include “titles” and relationships to

awards and actors, (3) the available films in the source, and (4) the actors of a particular

film, which is obtained by stepping across the “involved” link for the film in question.

150

Thus, without requiring any knowledge of the source’s data model, with direct navigation,

the agent can still freely browse the source to gather information.

5.2 Navigation Operators

Incremental navigation refers to the ability to step iteratively through an information

source one item at a time. For example, when situated at a particular item (a location),

we can use incremental operators to determine the set of available links from the current

position and follow one of these links to a new location. This style of navigation is in

contrast to approaches that navigate information using path expressions [29, 45], which

describe collections of paths and variable bindings over a database. Path expressions

enhance query capability, whereas our goal is to enable step-by-step navigation through

an information source. The following issues motivate our choice of operators.

• How should items be represented? We wish to support navigation regardless of the

data model used by the source. However, sources represent information items using

different data-model constructs. At issue is whether to expose atomic (for example,

text strings) or structured values (for example, records or lists) through navigation

operations. We define the navigation operators such that each operator takes and

returns atomic values, which keeps the navigation interface simple, and does not

require additional knowledge of the underlying structures of data models.

• How should navigation start? By incremental navigation, we mean navigating from

a current location to a new location. However, when a source is first encountered,

it is not immediately clear from which item to start navigation. Path-based ap-

proaches typically use available collections or collections formed from queries to

apply navigation expressions. Because the items for beginning navigation depend

on the individual source and its data model, we choose to include an operator for

obtaining the starting locations of sources (that is, the operator returns one or more

entry points).

151

• How should schema-instance relationships be handled? Data models can have differ-

ent requirements on schema-data conformance and these constraints have implica-

tions for navigation. For example, a partial-schema data model may require support

for navigating instances that are not included in the schema, because the schema

alone cannot be used to navigate all available data. We define a minimal set of

generic operators that can be used to access the various styles of schema arrange-

ments possible in data models.

• What information within a source should be navigable? For a given source, some

information may be meaningful for navigation, while other information may not.

For example, data-model-aware navigation might offer navigable items that are not

necessarily useful in direct navigation. We allow different implementations for each

navigation operator through navigation bindings, expressed using the ULD query

language.

The incremental navigation interface consists of the following operators. Navigable

items in an information source are separated into disjoint sets of links and locations. For

a given configuration, we assume a finite set of location names L and a finite set of link

names N where both L and N consist of simple, atomic string values.

• Starting Points. The operator sloc : P(L) returns all available entry points into

an information source. Note that we require the result of sloc to be a set of locations

(as opposed to links).

• Links. The operator links : L →P (N) returns all out-bound links available from

a particular location. We note that for some locations, there may not be any links

available, that is, the links operator may return the empty set.

• Following Links. The operator follow : L×N → P(L) returns the set of locations

that are at the end of a given link. We use the follow operator to prepare to move

to a new location from our current location. Note that following a link may lead to

a set of locations. Given the set of locations returned by the follow operator, the

user or agent directing the navigation can choose one as the new location.

152

• Types. The operator types : L → P(L) returns the (possibly empty) set of types

for a given location. We use the types operator to obtain locations that represent

the schema for a data item. Note that a particular location may have zero, one, or

many associated types.

• Extents. The operator extent : L →P (L) returns the (possibly empty) set of

instances for a given location. The extent operator computes the inverse of the types

operator.

We call a group of navigation-operator implementations (that is, one implementation

for each operator) a navigation binding (or binding when the context is clear). To issue the

sloc operation with binding b on configuration c, we use the notation b[c].sloc. To illustrate,

consider the following binding Brdf for navigating RDF sources (that is, this binding

returns data-model information for data-model-aware browsing). The following shows a

sequence of calls to Brdf ’s operator implementations and the results for a configuration

named c.

Brdf [c].sloc = {‘class’, ‘property’, ‘subClass’, ‘resource’, ‘triple’, ...}

Brdf [c].extent(‘class’) = {‘film’, ‘comedy’, ‘thriller’, ...}

Brdf [c].links(‘thriller’) = {‘title’}

Brdf [c].extent(‘thriller’) = {‘#m1’, ...}

Brdf [c].follow(‘#m1’, ‘title’) = {‘The Usual Suspects’}

The goal of the operators is to allow navigation through an information source incre-

mentally, as opposed to issuing special-purpose queries to obtain the same information.

Note that, as shown by the follow operator in the example above, bindings present a

view of the data that does not require the user to connect the various underlying data

structures (for example, by joining various structures together)—in this case, the follow

operator binding computes the connection between a property name ‘title’ and the use of

the property within a triple (to obtain a new location). The challenge of providing incre-

mental navigation is in specifying bindings of general use for navigation, and simplifying

the effort on the part of the user for stepping through a source.

153

5.3 Navigation Bindings as ULD Queries

We present two ways that bindings can be implemented against the ULD. The first method

treats a binding as a set of queries using the ULD query language. We call these binding

queries. The second method provides for higher-level description of bindings (and is

described in the next section).

For the query approach, we treat an operator binding as the result of a ULD query

where each operator is represented as an intensional predicate in a Datalog program. We

represent the incremental navigation operators using the following intensional predicates.

• sloc(r), where r represents a starting location.

• links(l, r), where r is a link from location l.

• follow(l, p, r), where r is the location that is found by following link p from some

location l.

• types(l, r), where l is a location of type r.

• extent(l, r), where r is in the extent of l.

For a given operator invocation, the binding computes the least fix-point of the op-

erator’s predicate over the configuration, and returns the associated set of results. The

following set of rules define a portion of the binding Brdf above. We note that the defi-

nition uses an additional intensional predicate for computing the transitive closure of the

RDF subclass relationship.

sloc(R) ← ct-inst(R, C).
extent(class, R) ← c-inst(R, class).
links(L, R) ← c-inst(C, class), C.hasLabel:L, c-inst(P, property), P.hasLabel:R,

P.hasDomain:C′, subClassClosure(C, C′).
extent(L, R) ← c-inst(C, class), C.hasLabel:L, d-inst(R, C).
follow(L, P, R) ← c-inst(T, triple), T.hasPred:X, T.hasSubj:L, T.hasObj:R,

c-inst(R, literal), d-inst(L, C), c-inst(X, property), X.hasLabel:P,
X.hasDomain:C′, subClassClosure(C, C′).

154

subClassClosure(C, C) ← c-inst(C, class).
subClassClosure(C1, C3) ← c-inst(S, subClass), S.hasSub:C1, S.hasSuper:C2,

subClassClosure(C2, C3).

In addition to data-model-aware navigation, we can also define operator bindings for

direct navigation using the same approach. For example, the following binding queries

present a complete-schema view of an RDF configuration. As shown, the only starting

locations are classes and the only available links from a class are its associated properties

and its associated instances. (Note that we reuse the subClassClosure intensional predicate

defined above.)

sloc(R) ← c-inst(C, class), C.hasLabel:R.
links(L, R) ← c-inst(C, class), C.hasLabel:L, c-inst(P, property), P.hasLabel:R,

P.hasDomain:C′, subClassClosure(C, C′).
links(L, R) ← c-inst(C, class), d-inst(O, C), O.hasURI:L, c-inst(T, triple),

T.hasPred:X, T.hasSubj:O, c-inst(X, property), X.hasLabel:R,
X.hasDomain:C′, subClassClosure(C, C′).

follow(L, P, R) ← c-inst(C, class), C.hasLabel:L, c-inst(T, property), T.hasLabel:P,
T.hasDomain:C′, T.hasRange:C′′, C′′.hasLabel:R,
subClassClosure(C, C′).

follow(L, P, R) ← c-inst(C, class), C.hasLabel:L, c-inst(T, property), T.hasLabel:P,
T.hasDomain:C′, T.hasRange:R, R=‘literal’,
subClassClosure(C, C′).

follow(L, P, R) ← c-inst(C, class), d-inst(O, C), O.hasURI:L, c-inst(T, triple),
T.hasPred:X, T.hasSubj:O, T.hasObj:R, c-inst(R, literal),
c-inst(X, property), X.hasLabel:P, X.hasDomain:C′,
subClassClosure(C, C′).

follow(L, P, R) ← c-inst(C1, class), d-inst(O1, C1), O1.hasURI:L, c-inst(T, triple),
T.hasPred:X, T.hasSubj:O1, T.hasObj:O2, O2.hasURI:R,
c-inst(X, property), X.hasLabel:P, X.hasDomain:C′,
subClassClosure(C, C′).

extent(L, R) ← c-inst(C, class), C.hasLabel:L, d-inst(O, C), O.hasURI:R.
type(L, R) ← c-inst(C, class), C.hasLabel=R, d-inst(O, C), O.hasURI:L.

155

RDF Binding B = (L, N, S, F)
L = class, resource, literal
N = property, triple
S = class
F = triple : resource[triple.hasSubj]⇒literal[triple.hasObj],

triple : resource[triple.hasSubj]⇒resource[triple.hasObj],
property : class[property.hasDomain]⇒class[property.hasRange]

name(X,N) ← c-inst(X,class), X.hasLabel:N.
name(X,N) ← c-inst(X,resource), X.hasURI:N.
name(N,N) ← c-inst(N,literal).
name(X,N) ← c-inst(X,property), X.hasLabel:N.
name(X,N) ← c-inst(X,triple), X.hasPred=R, c-inst(R,property), R.hasLabel=N.

Figure 5.1: A high-level binding for direct navigation of RDF.

5.4 Higher-Level Binding Specifications

The binding-queries approach is a low-level mechanism for providing detailed and com-

plete descriptions of bindings. Here we describe a higher-level mechanism to specify bind-

ings, which we call the binding constructs approach. This approach is used for specifying

direct-navigation bindings and allows a user to select certain constructs as locations (to

be viewed) and certain other constructs as links (to be followed). Thus, a user can eas-

ily restrict the subset of links and locations as well as how they are traversed without

having to write Datalog rules. Using this specification, the navigation operators are au-

tomatically computed by traversing the appropriate instances of locations and links in

the configuration. For example, to compute the links operator from a given location, we

start from the location’s construct instance and consider connections from this instance

to other instances to see if any are designated as a link. Figure 5.1 shows an example

of a binding-constructs definition for RDF. In the example, RDF classes, resources, and

literals are considered sources for locations and RDF properties and triples are considered

sources for links.

We define the binding-constructs specification as a tuple of the form (L,N, S, F). The

disjoint sets L and N consist of construct identifiers such that L is the set of constructs

used as locations and N is the set of constructs used as links. The set S ⊆ L gives the

entry points of the binding. Finally, the set F contains link definitions (described below),

which fill in the details of how links should be traversed.

156

Each construct in L and N has an associated naming definition that describes how

to compute the name of an instance of the construct. The name would typically be

viewed by the user during navigation. (Recall that the incremental operators work over

string values, therefore, the naming definitions serve to map location and link instances

to appropriate string values.) A naming definition is expressed as a Datalog rule whose

head is the intensional predicate name(x,n) such that x is a given construct instance and

n is the string to be used as the name of the instance. For example, in Figure 5.1, RDF

classes and properties are named by their labels, resources are named by their URI values,

a literal value is used directly as its name, and the name of a triple is the name of its

associated predicate value.

The incremental operators in the binding-constructs approach are computed automat-

ically by traversing connected instances. We define the following rules to compute when

two instances are connected. (Note that these connected rules only perform single-step

traversal, and in general, can be extended to allow an arbitrary number of steps.)

connected(X1, X2) ← c-inst(X1, C), ct-inst(C, struct-ct), X1.S:X2.
connected(X1, X2) ← c-inst(X1, C), ct-inst(C, bag-ct), X2∈X1.
connected(X1, X2) ← c-inst(X1, C), ct-inst(C, list-ct), X2∈X1.
connected(X1, X2) ← c-inst(X1, C), ct-inst(C, set-ct), X2∈X1.
connected(X2, X1) ← connected(X1, X2).

A connected formula is true when there is a structural connection between two instances.

Note that the rules above do not consider the case when two items are linked by a d-

inst relationship. Instead, the d-inst relationship is directly used by the types and extent

operators, whereas connections are used by the links and follow operators.

The link definitions of F serve to describe the behavior of links. A link definition in

F has the form ck : c1[p1] ⇒ c2[p2] where:

• The behavior of the link construct ck ∈ N is being described by the rest of the

expression. For example, in Figure 5.1, the first link definition is for triple constructs.

• For c1, c2 ∈ L, the construct ck can serve to link an instance of c1 to an instance

of c2. Thus, we can traverse from instances of c1 to instances of c2 via an instance

157

of ck. For example, in Figure 5.1, the first link definition says that we can follow a

resource instance to a literal instance if they are connected by a triple.

• The expressions p1 and p2 further define how instances of ck can be used to link c1

and c2 instances, respectively. For example, in Figure 5.1, the first link definition

states that triples link resources and literals through the triple’s hasSubj and hasObj

selector, respectively.

Link definitions are used directly to define the links and follow operations. We intro-

duce the linkSource(F , i1, ik) and linkTarget(F , ik, i2) clauses to filter possible connections

that are considered when computing the links and follow operations. Given a set of link

definitions F and a connection from i1 to ik such that connected(i1, ik) is true (where

ik is the link instance), linkSource(F , i1, ik) is true if there is at least one link definition

ck : c1[p1] ⇒ c2[p2] in F such that i1 is an instance of c1 (that is, c-inst(i1, c1) is true), ik

is an instance of ck (that is, c-inst(ik, ck) is true where ck is a link construct), and i1 and

ik are connected according to the expression p1. Similarly, linkTarget(F , ik, i2) is true if

there is at least one link definition ck : c1[p1] ⇒ c2[p2] in F such that ik is an instance of

ck (a link construct), i2 is an instance of c2, and ik and i2 are connected according to the

expression p2.

Given the above definitions, we automatically compute each navigation operator using

the Datalog queries in Figure 5.2. We assume each operator is represented as an intensional

predicate (as before) and the binding specification B = (L,N, S, F) is stored as a set of

extensional predicates Gl(X), Gn(X), Gs(X), and Gf (X). For example, the expression

Gl(X) binds X to L in the binding B. We also assume that the name predicate is stored

as an intensional formula (defined in the binding).

The first rule finds the set of entry points: It obtains a construct in the set of starting

locations, finds an instance of the construct, and then computes the name of the instance.

The second rule finds the locations with links. For each named instance in the configuration

that is connected to another instance, we use the linkSource predicate to check if it is a

valid connection, we check to make sure that the link instance (represented as the variable

Y) is valid, and then compute the name of the instance. The third rule is similar to the

158

sloc(R) ← Gs(S), P∈S, c-inst(X, P), name(X, R).
links(L, R) ← name(X, L), connected(X, Y), Gf (F), linkSource(F, X, Y), c-inst(Y, P),

Gn(N), P∈N, name(P, R).
follow(L, P, R) ← name(X, L), connected(X, Y), Gf (F), linkSource(F, X, Y), c-inst(Y, Q1),

Gn(N), Q1∈N, name(Q1, P), connected(Y, Z), c-inst(Z, Q2),
Gl(L), Q2∈L, linkTarget(F, Y, Z).

type(L, R) ← name(X, L), c-inst(X, P), Gl(L), P∈L, d-inst(X, Y), c-inst(Y, Q), Q∈L,
name(Y, R).

extent(L, R) ← name(Y, L), c-inst(Y, Q), Gl(L), Q∈L, d-inst(X, Y), c-inst(X, P), P∈L,
name(X, R).

Figure 5.2: The Datalog rules to compute links and locations based on a binding-constructs
specification.

second, except it additionally uses the linkTarget to determine the new location. Finally,

the last two rules use the d-inst relationship to find types and extents.

To demonstrate the approach, we use the binding definition of Figure 5.1 and the

sample configuration of Figure 5.3. This configuration shows part of Figure 1.3 as a graph

whose nodes are construct instances and edges are either connections between structures

or d-inst links. Consider the following series of invocations, assuming the configuration is

named c.

1. B[c].sloc = {‘film’,‘thriller’}. According to the binding definition, the sloc operator

returns all the labels of class construct instances. As shown in Figure 5.3, the only

class construct instances are thriller and film.

2. B[c].links(‘film’) = {‘title’}. The links operator is computed by considering each

connected construct instance of film until it finds a construct instance whose asso-

ciated construct is in N . As shown, the only such instance is title, which is an RDF

property.

3. B[c].extent(‘film’) = {‘#m1’}. The extent operator looks for the d-inst links of the

given instance. As shown, the only such link for film is to m1.

4. B[c].follow(‘#m1’, ‘title’) = {‘The Usual Suspects’}. The follow operator starts in

the same way as the links operator by finding instances (whose constructs are in N)

159

unbound
path
location

m1 (resource)

t1 (triple)

d-inst

d-inst

thriller (class)
hasSub

hasURI ‘#m1’ (URI)

hasSuper

film-thriller (subclass)

film (class)

hasDomain

title (property)
‘literal’

hasObj

d-inst

hasSubj

hasPred

hasRange

‘The Usual Suspects’ (literal)

Figure 5.3: An example of labeled instances for RDF.

that are connected to the given instance. For the given item, the only such instance

in Figure 5.3 is t1. The follow operator then returns the hasObj component of t1,

according to the link definition for triple.

Note that according to the rules for computing the follow and links operators, we

only consider instances that are directly connected to each other (through the connected

predicate). Thus, invoking the operator links(‘thriller’) will not return a result (for our

example) because there are no link construct instances directly connected to the associated

RDF class. However, because of the implied relationship among subclasses, the algorithm

should also include the title link, because thriller is a subclass of film. That is, the prop-

erties of a class in RDF also include the properties of its subclasses. One way to include

such information is to expand the set of connection rules to consider subclass instances.

The connection rules could be augmented to consider instances that are indirectly con-

nected through intermediate instances (for example, for certain cases such as subclass).

These new connection definitions could be added directly to the binding definition of the

RDF data model. Alternatively, it may be possible to extend the binding specification to

include multiple steps, for example, through arbitrary path expressions in F , which could

be used to define the appropriate connected rules.

Using the ULD, we have built a prototype tool for data-model-aware browsing called

160

JustBrowsing [18]. In JustBrowsing, we implemented a graphical user interface and the

navigation operations to allow users to browse information stored in the RDF, relational,

XML, and Topic-Map data models (see Section 6.1). Although not discussed here, we

believe that by allowing multiple-step connections, binding-constructs specifications can

be given for XML and relational data models, among others. For example, in the relational

model, locations could be represented using relations, tuples, and values, and links could be

represented using foreign keys. Similarly, for XML, locations could be represented using

elements, element definitions, pcdata, and cdata, and links could be represented using

attributes and subelement relationships. As future work, we intend to define navigation

for additional data models using binding-constructs specifications.

Finally, we believe the approach described in this chapter provides a simple, generic

abstraction (that consists of links and locations) that can be applied over arbitrary data

models. More than that, with the binding-constructs approach, it becomes relatively

straightforward to specify the links and locations for a data model, thus enabling generic

and uniform access to information represented in any underlying data model (represented

in the ULD). We believe that this approach can be extended beyond navigation to include

querying information sources (that is, querying links and locations) and for specifying

high-level mappings between data sources.

Chapter 6

Conclusion

Data models provide the basic data structures used to organize and store data within

an information management system. Data models differ in their choice of structures,

constraints, and schema requirements. The use of different data models results in struc-

tural heterogeneity, which can also include differences in schema (often due to the use of

heterogeneous data models) and in how data values are represented. Structural hetero-

geneity must be resolved to combine information from multiple sources and to enable tool

interoperability.

Most approaches for managing structural heterogeneity [1, 10, 24, 35, 40, 46, 57, 62, 64,

68, 69, 70, 75] focus on differences between schemas and assume a common data model is

used for schema mapping and integration. Alternatively, a meta-data-model can be used

to explicitly represent differences in data models. Many meta-data-model approaches [5, 6,

8, 31, 32, 78, 30, 63] provide languages for converting schema and corresponding instance

data in one source to valid schema and instance data in another source (thus supporting

one style of data-model mapping). These approaches, however, are characterized by their

assumption that schema is required by all data models. Because of this assumption, these

approaches cannot accurately describe more flexible data models, such as XML and RDF,

cannot capture the various conformance constraints inherent in data models, and cannot

express many of the desired mappings between sources that use agreed-upon conventions

for representation or that must leverage multiple levels of information in a source.

The Uni-Level Description (ULD) extends existing meta-data-models by separating

schema and instance constructs (through three distinct instance-of relationships) and by

providing uniform access to data model, schema, and instance data. The ULD can describe

161

162

a wide variety of data models including those that allow optional, partial, and multiple

levels of schema, and can be used to describe inherent data-model constraints. Finally,

the ULD enables flexible transformations among information sources due to its uniform

representation of data model, schema, and data.

In the rest of this chapter, we discuss our experiences with implementing the ULD for

transformation and navigation, compare the ULD with other meta-data-model approaches,

highlight the contributions of the ULD, and discuss possible directions for future research.

6.1 Implementation Issues

The ULD framework evolved from our earlier work [16, 17, 19, 20, 37], which uses a simpler

meta-data-model primarily consisting of record-based structures (struct-ct constructs),

atomic structures (atomic-ct constructs), and union types (union-ct constructs). Much of

our implementation work centers on this earlier meta-data-model. Here, we briefly discuss

implementations for transformation and navigation and a possible extension that we leave

for future work.

For both transformation and navigation, we treat a ULD configuration as a fully

materialized view [71] over an underlying information source. That is, we convert schema

and data of an information source (such as an XML document) into a corresponding set of

ULD facts. We assume the data-model description is also included in each configuration.

For each tool that uses a particular data model, a program is written called a ULD

extractor, which accesses the information source of interest to create a new configuration

loaded with the appropriate set of ULD facts. Along with a ULD extractor, a ULD

injector is written (for transformation) that takes a ULD configuration and creates a new

information source (for example, a new XML file or relational database).

The implementations for both transformation and navigation use the Prolog program-

ming language. (We also experimented with an early version of transformation written

in Java, that stored ULD configurations in a relational database.) Using Prolog, a ULD

configuration is stored as a knowledge-base, which is a text file that contains a set of facts

and (possibly) Horn-clause rules. Figure 6.1 shows the basic transformation architecture.

163

Mapping RulesULD Extract
Relatonal

Relatonal
ULD Inject

Transformation

ULD Extract
XML

Engine

Relational Databases
ULD Configuration

XML Documents ULD Configuration

Figure 6.1: The basic architecture of the ULD transformation engine.

(The XML configuration is assumed to be the source of the transformation and the re-

lational configuration is assumed to be the target.) In particular, we use SWI-Prolog

[81], which is an open-source Prolog implementation, to execute a set of mapping rules.

The transformation engine (a Prolog program) assumes there is exactly one source and

one target configuration. Both the source and target configurations serve as input to the

transformation engine.

Because Prolog permits only a single formula in the head of a rule, we use a special

unary predicate (that takes a list of ULD formulas) to simulate the use of multiple for-

mulas. The transformation engine first creates a new configuration to hold the result of

the transformation and updates this new configuration with facts from the given target

configuration. The transformation engine then uses built-in Prolog predicates to find all

answers for the head formula (used to wrap multiple target formulas). The target formulas

generated from the transformation are then added to the result configuration. We note

that mapping rules must be written to mimic Datalog rules, for example, to ensure that

all results are obtained (using cut and fail operators), and to ensure proper stratification

(by manually ordering mapping rules).

164

Although writing mapping rules is more difficult in Prolog (because it does not explic-

itly compute a fixed-point), it offers some benefits. For example, in Prolog it is straightfor-

ward to write user-defined functions and most Prolog systems provide a number of built-in

libraries with functions that can be used directly in mapping rules (for example, for string

manipulation). Also, the SWI-Prolog system has a built-in parser for accessing XML

and XML-DTD documents, RDF and RDF-Schema documents, and it supports access

to relational databases through ODBC. Thus, we can write ULD extractor and injector

operations (for relational, XML, and RDF sources) directly in Prolog.

Similar to transformation, applications for data-model-aware and an early version of

direct-browsing are written in Prolog [18]. Figure 6.2 shows the basic architecture for

the navigation implementation. We note that navigation does not require updating an

information source, that is, the architecture of Figure 6.2 only requires tools for extracting

underlying information into a ULD configuration and not for injecting information back

to the underlying source. For browsing, we use Amzi logic server [4] (another Prolog

implementation) because it can be accessed from within Visual Basic—the implementation

language of the graphical interface. Thus, similar to transformation, operator binding rules

are executed using Prolog.

We note that the motivation for incremental navigation, including an initial imple-

mentation, came from our work on the Superimposed-Schematics browser [21], which uses

similar operators as those defined in Chapter 5 for navigation.

A potential disadvantage of using fully materialized ULD configurations is that all

information in a source is initially converted to the ULD, regardless of whether it is needed

for transformation or browsing. Figure 6.3 shows a modified transformation architecture

in which ULD configurations are only partially materialized with data-model information.

(Note that this architecture has not been implemented.) As shown, a ULD configuration

in this new architecture becomes an interface that interacts directly with the underlying

source. When certain facts are needed in a transformation, the transformation engine

calls functions defined in the ULD interface, which then issues queries to the underlying

source, converts the result to corresponding ULD facts, and returns the associated facts

to the transformation engine.

165

RDF
ULD Extract

XML
ULD Extract

RDF Operator
Binding Binding

XML Operator

ULD Configuration ULD Configuration

RDF Documents XML Documents

Navigation Interface

Figure 6.2: The basic architecture of the ULD navigation prototype.

The ULD interface (as shown in Figure 6.3) would contain one or more operations

for each ULD formula. For example, we might have two operations for the ct-inst(x,y)

formula, one to retrieve constructs x given a construct-type y, and one to retrieve a

construct type y given a construct x. The ULD interface would be implemented for

each tool that uses a specific data model. (Note that we can use SWI-Prolog directly to

implement an interface for relational, XML, and RDF sources.) The ULD interface must

also consider update operations to the underlying source for transformation.

There are a number of open issues in terms of the benefits and feasibility of using a ULD

interface and partially materialized configurations. For example, one issue concerns the

use of identifiers within the ULD. In the relational data model, a table construct is defined

as a bag of tuple constructs. Instances of table and tuple constructs are assigned unique

identifiers, which are constructed when a ULD configuration is materialized. In practice,

a relational DBMS may or may not provide access to tuple identifiers. Therefore, the

166

Call Structure

Mapping Rules

ULD Interface (Relational)

ULD Interface (XML)

Dataflow

update

query

query

calls

calls

XML Documents

Relational Databases

Engine
Transformation

Figure 6.3: An architecture for ULD transformation using non-materialized views.

ULD interface for the relational data model must assign tuple identifiers and potentially

keep track of which tuple identifiers belong to underlying tuples. Finally, we note that

the use of partially materialized configurations is for efficiency. There are a number of

other possibilities for providing greater efficiency, for example, using existing Datalog

optimization techniques or developing techniques specifically for the ULD transformation

language. In general, there are many opportunities for optimizing data-model and schema

transformations.

6.2 Related Work

Here we summarize specific meta-data-model approaches related to the ULD. In general,

the ULD is the only meta-data-model approach we know of that explicitly models con-

formance. We believe this is due, in part, to the focus of existing approaches on solving

database interoperability problems, thus assuming schema is required. In addition, in

most approaches, transformation is defined at the data model or schema level (but not

both). The ULD enables mappings at various levels of abstraction, for example, data-

model-to-data-model, data-model-to-schema, and various combinations of these. We also

167

permit mappings that do not require complete, or one-to-one, transformations.

Atzeni and Torlone [5, 6, 78] define a meta-data-model (called MDM) to support

mappings among data models to convert schemas in one data model into valid schemas

in another data model. In their early work [5], they focus on eliminating the need to

manually map among data models by using a super data model. For each data model

A, two mappings are defined: (1) the constructs of A are mapped to the constructs of

the super data model, and (2) the constructs of the super data model are mapped to the

constructs of A. Thus, to convert a schema from data model A to B, these mappings are

used to first convert the schema to the super data model, and then from the super data

model to B. This approach avoids the need to map every data model to every other data

model, that is, schemas from A can be converted to valid schemas of B without a direct

data-model mapping from A to B.

MDM uses a set of basic structural primitives to define data-model constructs. The

structural primitives are similar to E-R entity and relationship types and constructs are

defined as compositions of these structures. For example, to describe an object-oriented

data model, we would use the basic primitives to define the structure of classes and

attributes. A schema in MDM is an instantiation of these data-model constructs. It is

important to note that MDM does not consider source data. Thus, a schema type is a

ground instance in MDM (that is, it cannot be further instantiated). Atzeni and Torlone

also define approaches to automatically map data models based on an early meta-data-

model, however, their approach assumes constructs and basic structures are one-to-one in

a given data model (although structures can still be nested).

YAT [30, 32] differs from MDM in that it uses a meta-data-model to support data

conversion (as opposed to schema conversion) among information sources. YAT is closely

tied to XML, and is based on a hierarchical data model in which the data of an information

source is represented as a tree, where nodes contain either labels or content and edges

represent parent-child connections (attributes are not considered). YAT extends XML by

offering a meta-data-model for defining tree patterns, which are used to create abstract

DTDs (that is, DTDs with variables). These abstract DTDs describe the conventions

(that is, tag names and tree structures) used to store information from other data models

168

in YAT. A tree pattern allows variables as nodes and cardinalities on edges. Instance data

in YAT is called a ground pattern because it contains constants only.

YAT uses a declarative, Horn-clause language called YATL to define schema mappings

for data conversion. In YATL, rules define transformations between ground trees. How-

ever, it is not possible in YATL to define transformations at higher levels of abstraction,

for example, to define mappings among data models.

When compared to MDM, YAT has a limited capability for defining the structure of

data model constructs or schema. YAT is focused on defining conventions for encoding

heterogeneous data as hierarchies, and does not provide an explicit description of the

structures commonly used in data models.

Gangopadhyay and Barsalou [8] define a meta data model called M(DM) to support

schema mapping and data conversion. M(DM) introduces a set of metatypes, which are

similar to Atzeni and Torlone’s primitive structures in that metatypes denote entities

(called things) and relationships (called links). A data model in M(DM) is represented

as a collection of metatypes, some of which may be introduced by the data model as

specializations of default M(DM) metatypes. In M(DM), a data model construct is one-

to-one with a metatype as opposed to a pattern built of basic structures as in MDM

or YAT. A schema instantiates the associated data model metatypes, and a database

contains instances of the corresponding schema types. Thus, metatypes are considered

second-order types.

The primary goal of M(DM) is to enable data intergration in federated database sys-

tems. M(DM) provides a language called M(DM)-L for defining Horn-clause views over

source schemas. M(DM) can use metatypes to uniformly access source schemas in different

data models for defining global views. Thus, transformation of a source to a canonical

data model is not required. However, in M(DM) the structure of a metatype is not ex-

plicit: There is no mechanism in M(DM) to range over or access the metatype definitions

or structures. Therefore, M(DM) cannot support data-model mappings. We note that

M(DM)-L has a similar goal as YATL, but is fundamentally different because it can use

structure to access schema directly, whereas YAT-L defines views as tree transformations.

169

The Meta-Object Facility (MOF) standard [61] is a meta-data-model architecture pro-

posed by the Object Management Group. The MOF is similar to MDM, however, it

contains a complex and large number of primitive structures (inspired by the UML meta-

model) for defining data models, called metamodels in MOF. The main focus of the MOF

is to enable information models, such as UML class diagrams, to be shared between ap-

plications. One application of the MOF architecture is to store and interchange UML

class diagrams using the XML Metadata Interchange (XMI). Given a UML model, XMI

prescribes a method to encode the model as an XML DTD. In addition, the MOF has

an implementation in CORBA using meta objects, for example, for describing IDL inter-

faces. One of the primary goals of MOF is to permit uniform access to metamodels (such

as UML and IDL) and models (for example, UML class diagrams).

Finally, no other meta-data-model approach we are aware of defines a constraint lan-

guage for expressing inherent data-model constraints. In the ULD, constraints can define

structural restrictions (such as primary and foreign key constraints) as well as require-

ments on conformance. Because the ULD constraint language can be represented as a

stratified Datalog¬ program, data-model constraints can also be executed to check that a

configuration is correct (with respect to the given constraints). We believe, as discussed

in Section 4.3, that constraints may also be used to check whether executing transforma-

tion rules will result in consistent configurations. In general, we believe that the ULD’s

treatment of conformance and constraints can be incorporated in and benefit current

meta-data-model approaches, such as MOF.

6.3 Contributions

A key contribution of the ULD framework is its use of three, distinct instance-of re-

lationships plus a conformance relationship. To the best of our knowledge, no other

data-modeling or meta-data-modeling approach distinguishes type-instance relationships

in this way. That is, the traditional instance-of or type relationship is not overloaded in

the ULD compared with other meta-data-model approaches and data models.

The conformance relationship allows the configurer of a data model to specify the

170

connection between a data construct definition with the corresponding schema construct

definition. And by providing constraints on the conformance relation, the ULD permits

accurate description of a wide range of existing data models, including traditional database

data models (with strict schema requirements) and more flexible data models such as XML

and RDF.

These features of the ULD framework form the basis of the contributions of this dis-

sertation, which we highlight below.

• A uniform representation. The use of distinct instance-of relationships allows con-

struct types, constructs, and construct instances to be treated uniformly. Thus, data

model, schema, and instance data of an information source can be directly accessed,

for example, within a single query, constraint, or mapping.

• A first-order logic interpretation. The ULD has a direct interpretation in first-order

logic, and in particular, a configuration can be represented as a set of Datalog facts

and accessed using standard Datalog query languages, including stratified Datalog¬.

• An expressive constraint language. The ULD constraint language provides a conve-

nient syntax for expressing constraints. The constraint language is a subset of full

first-order logic, but is suitable for expressing most constraints for the data models

we consider. In addition, the constraint language has a direct implementation using

standard stratified Datalog¬.

• A language for expressing common data-model constraints. Constraint macros offer

a concise syntax for expressing many of the common constraints inherent in data

models. Constraint macros have a direct conversion to equivalent expressions in the

ULD constraint language.

• A classification of conformance properties. The ULD clarifies the schema require-

ments offered by existing data models by allowing these requirements to be explicitly

modeled. These various schema-instance arrangements are used to define a classi-

fication scheme for the structural and process-oriented conformance properties of

data models.

171

• A flexible transformation language. The ULD transformation language is based on

stratified Datalog¬ and allows declarative, executable specifications of a wide vari-

ety of transformations. The transformation language can express mapping rules to

convert information from one source to another, in the presence of different schemas

and data models, thus providing a mechanism to resolve structural heterogeneity.

• A generic language for incremental navigation. The ULD offers the potential of

applying generic operations—operations that are independent of a particular data

model. We introduce generic operations for incremental navigation, which provide

a high-level abstraction of links and locations for navigating and browsing an infor-

mation source. With the ULD, we are able to implement the navigation operations

using either ULD queries or high-level binding specifications so that the operations

can be easily applied generically to information sources regardless of the data model

used for representation.

Finally, in this dissertation, we used the ULD to: (1) express the constructs and

constraints of a wide variety of data models, with varying structures and conformance

properties, (2) define a number of common data-model transformations as well as a schema

transformation that resolves structural heterogeneity, (3) sketch approaches to validate

transformation rules and fill in partial rules, and (4) specify data-model aware and direct

navigation bindings for the RDF data model.

6.4 Future Work

We describe areas of future work beyond the optimization issues discussed earlier. The

following open issues are focused on transformation, and specifically on making it easier to

define mappings to resolve structural heterogeneity and to further understand and exploit

the details of data models and their constraints.

One reason writing transformations is difficult is that data models and schemas have

various implicit constraints. Keeping track of these constraints and ensuring that a trans-

formation does not violate them is generally difficult. Although the ULD provides an

expressive constraint language (so that constraints can be explicitly captured), not all of

172

the constraints that can be expressed can be exploited. In particular, checking that a

transformation is satisfiable in the presence of constraints (that are expressed using strat-

ified Datalog¬) is in general an undecidable problem. The constraint macros described

in Chapter 3 offer one approach to limit the set of possible constraints (possibly to a

decidable set). Of interest is to define a broad enough set of constraint macros to capture

important data-model restrictions (such as conformance constraints), while maintaining

the decidability of checking for well-formed transformations. A similar approach is used

in description logics [7], where the goal is to define a decidable fragment of first order

logic for constraining semantic data models. As in description logics, our challenge is to

define classes of constraints that can usefully restrict data models while at the same time

be practically exploited for transformation.

The ULD transformation language specifies the low-level details of a conversion. Such

an approach is attractive because it enables extremely flexible transformations (for ex-

ample, data-model mappings, schema mappings, and arbitrary combinations), however,

specifying mapping rules is not trivial. We would like to explore the use of higher-level

transformation languages that shield the low-level details of transformation. Chapter 4

sketched an informal approach for elaborating constraints, which assumes an initial cor-

respondence between data-model constructs. Similar, correspondence-based approaches

have been defined for schema mappings [64, 68, 69]. We would like to look further into

applying these approaches for data-model mappings. The ULD might also provide bene-

fits for existing schema-based approaches. For instance, if a mapping among schemas can

be expressed in the ULD transformation language given initial schema correspondences,

the data-model mapping would result “for free”—that is, with the ULD, we bypass the

common data model, eliminating the additional conversions in and out of the common

data model from source and target data models.

We also want to explore the use of transformation patterns for expressing mappings. A

transformation pattern captures common mappings that can be combined to form complex

structural conversions. Although not described here, we have experimented with trans-

formation patterns [19] as parameterized specifications that take simple correspondences

as input to generate complex transformations. In this approach, patterns are analogous

173

to higher-order functions like map and fold in functional programming languages.

Another area of interest concerns modeling standard conventions with the ULD. Most

data models have well-known modeling conventions for representing data structures that

cannot be expressed directly with the data model’s available constructs. For example, in

the relational model, there are no explicit constructs for representing hierarchy; however,

there are many standard conventions (or strategies) for storing hierarchical data using re-

lations (some of these were used in the XML to relational transformations of Chapter 4).

We believe the ULD can be used to describe such modeling conventions (perhaps as trans-

formation patterns). By capturing modeling conventions and relating them to standard

modeling concepts in conceptual modeling theory, it may be possible to automate data-

model transformations. In addition, such a repository of conventions could serve as a

guide for database design.

Bibliography

[1] Abiteboul, S., Cluet, S., and Milo, T. Correspondence and translation for
heterogeneous data. In Proceedings of the 6th International Conference on Database
Theory (ICDT) (1997), vol. 1186 of Lecture Notes in Computer Science, Springer-
Verlag, pp. 351–363.

[2] Abiteboul, S., Hull, R., and Vianu, V. Foundations of Databases. Addison-
Wesley Publishing Company, 1995.

[3] Albert, J. Theoretical foundations of schema restructuring in heterogeneous mul-
tidatabase systems. In Proceedings of the ACM CIKM International Conference on
Information and Knowledge Management (2000), ACM Press, pp. 461–470.

[4] Amzi! inc. Amzi! Prolog + Logic Server. Available: http://www.amzi.com/,
[Viewed: December 11, 2003].

[5] Atzeni, P., and Torlone, R. Schema translation between heterogeneous data
models in a lattice framework. In Proceedings of the 6th IFIP TC-2 Working Con-
ference on Data Semantics (DS-6) (1995), Chapman and Hall, pp. 345–364.

[6] Atzeni, P., and Torlone, R. Management of multiple models in an extensible
database design tool. In Proceedings of the 5th International Conference on Extending
Database Technology (EDBT) (1996), vol. 1057 of Lecture Notes in Computer Science,
Springer-Verlag, pp. 79–95.

[7] Baader, F., Calvanese, D., McGuinness, D., Nardi, D., and Patel-

Schneider, P., Eds. The Description Logic Handbook. Cambridge University Press,
2003.

[8] Barsalou, T., and Gangopadhyay, D. M(DM): An open framework for interop-
eration of multimodel multidatabase systems. In Proceedings of the 8th International
Conference on Data Engineering (ICDE) (1992), IEEE Computer Society, pp. 218–
227.

[9] Barta, R. AsTMa* language family. Tech. rep., Bond University, July 2003. Avail-
able: http://astma.it.bond.edu.au/astma-family.dbk, [Viewed: December 11, 2003].

174

175

[10] Batini, C., Lenzerini, M., and Navathe, S. B. A comparative analysis of
methodologies for database schema integration. ACM Computing Surveys 18, 4
(1986), 323–364.

[11] Berners-Lee, T., Hendler, J., and Lassila, O. The semantic web. Scientific
American 284, 5 (2001), 34–43.

[12] Bernstein, P. A., Halevy, A. Y., and Pottinger, R. A vision of management
of complex models. SIGMOD Record 29, 4 (Dec. 2000), 55–63.

[13] Biezunski, M., Bryan, M., and Newcomb, S. R., Eds. Topic Maps. ISO/IEC
13250: Information Technology – Document Description and Markup Languages,
December 1999. Available: http://www.y12.doe.gov/sgml/sc34/document/0129.pdf,
[Viewed: December 11, 2003].

[14] Bohannon, P., Freire, J., Roy, P., and Siméon, J. From XML Schema to
relations: A cost-based approach to XML storage. In Proceedings of the 18th Inter-
national Conference on Data Engineering (ICDE) (2002), IEEE Computer Society,
pp. 64–73.

[15] Booch, G., Rumbaugh, J., and Jacobson, I. The Unified Modeling Language
Users Guide. Addison-Wesley Publishing, 1998.

[16] Bowers, S., and Delcambre, L. Representing and transforming
model-based information. In Electronic Proceedings of the ECDL Inter-
national Workshop on the Semantic Web (2000), pp. 1–14. Available:
http://www.ics.forth.gr/isl/SemWeb/proceedings/session1-1/paper.pdf, [Viewed:
December 11, 2003].

[17] Bowers, S., and Delcambre, L. A generic representation for model-based in-
formation. Electronic Transactions on Artificial Intelligence (ETAI) [Online] 5, 4
(2001), 1–34. Available: http://www.ida.liu.se/ext/epa/ej/etai/2001/D/index.html,
[Viewed: December 11, 2003], printed version published by Royal Swedish Academy
of Sciences.

[18] Bowers, S., and Delcambre, L. JustBrowsing: A generic API for exploring
information. In Demo Session at the 21st International Conference on Conceptual
Modeling (ER) (2002).

[19] Bowers, S., and Delcambre, L. On modeling conformance for flexible transfor-
mation over data models. In Knowledge Transformation for the Semantic Web (2003),
vol. 95 of Frontiers in Artificial Intelligence and Applications, ISO Press, pp. 34–48.

176

[20] Bowers, S., and Delcambre, L. The uni-level description: A uniform framework
for representing information in multiple data models. In Proceedings of the 22nd
International Conference on Conceptual Model (ER) (2003), vol. 2813 of Lecture
Notes in Computer Science, Springer-Verlag, pp. 45–58.

[21] Bowers, S., Delcambre, L., and Maier, D. Superimposed schematics: Intro-
ducing E-R structure for in-situ information selections. In Proceedings of the 21st
International Conference on Conceptual Model (ER) (2002), vol. 2503 of Lecture
Notes in Computer Science, Springer-Verlag, pp. 90–104.

[22] Bray, T., Paoli, J., Sperberg-McQueen, C., and Maler, E., Eds.
Extensible Markup Language (XML) 1.0 (Second Edition). W3C Recom-
mendation. World Wide Web Consortium (W3C), October 2000. Available:
http://www.w3.org/TR/2000/REC-xml-20001006, [Viewed: December 11, 2003].

[23] Brickley, D., and Guha, R., Eds. RDF Vocabulary Description Language 1.0:
RDF Schema. W3C Working Draft. World Wide Web Consortium (W3C), February
2003. Available: http://www.w3.org/TR/2003/WD-rdf-schema-20030123, [Viewed:
December 11, 2003].

[24] Cali, A., Calvanese, D., Giacomo, G. D., and Lenzerini, M. On the expressive
power of data integration systems. In Proceedings of the 21st International Conference
on Conceptual Modeling (ER) (2002), vol. 2503 of Lecture Notes in Computer Science,
Springer-Verlag, pp. 338–350.

[25] Carey, M. J., Haas, L. M., Maganty, V., and Williams, J. H. PESTO: An
integrated query/browser for object databases. In Proceedings of 22nd International
Conference on Very Large Data Bases (VLDB) (1996), Morgan Kaufmann, pp. 203–
214.

[26] Cattell, R., Ed. The Object Database Standard: ODMG 2.0. Morgan Kaufmann
Publishers, 1997.

[27] Chen, P. P. The entity-relationship model—toward a unified view of data. ACM
Transactions on Database Systems (TODS) 1, 1 (1976), 9–36.

[28] Chen, P. P. A preliminary framework for Entity-Relationship models. In Proceedings
of the National Computer Conference (1977), AFIPS Press, pp. 77–84.

[29] Christophides, V., Abiteboul, S., Cluet, S., and Scholl, M. From struc-
tured documents to novel query facilities. In Proceedings of the 1994 ACM SIGMOD
International Conference on Management of Data (1994), ACM Press, pp. 313–324.

177

[30] Christophides, V., Cluet, S., and Siméon, J. On wrapping query languages
and efficient xml integration. In Proceedings of the ACM SIGMOD International
Conference on Management of Data (2000), ACM Press, pp. 141–152.

[31] Claypool, K. T., and Rudensteiner, E. A. Sangam: A framework for model-
ing heterogeneous database transformations. In Proceedings of the 5th International
Conference on Enterprise Information Systems (2003), vol. 1, pp. 219–224.

[32] Cluet, S., Delobel, C., Siméon, J., and Smaga, K. Your mediators need data
conversion! In Proceedings of the 1998 ACM SIGMOD International Conference on
Management of Data (1998), ACM Press, pp. 177–188.

[33] Codd, E. A relational model of data for large shared data banks. Communications
of the ACM (CACM) 13, 6 (1970), 377–387.

[34] Cohen, W. W. Some practical observations on integration of web information. In
Informal Proceedings of the ACM SIGMOD Workshop on the Web and Databases
(WebDB) (1999), pp. 55–60.

[35] Davidson, S. B., and Kosky, A. WOL: A language for database transforma-
tions and constraints. In Proceedings of the 13th International Conference on Data
Engineering (ICDE) (1997), IEEE Computer Society, pp. 55–65.

[36] Delcambre, L., and Maier, D. Models for superimposed information. In Advances
in Conceptual Modeling (ER) (1999), vol. 1727 of Lecture Notes in Computer Science,
Springer-Verlag, pp. 264–280.

[37] Delcambre, L., Maier, D., Bowers, S., Weaver, M., Deng, L., Gorman,

P., Ash, J., Lavelle, M., and Lyman, J. Bundles in captivity: An application
of superimposed information. In Proceedings of the 17th International Conference on
Data Engineering (ICDE) (2001), IEEE Computer Society, pp. 111–120.

[38] Elmasri, R., and Navathe, S. B. Fundamentals of Database Systems. Addison-
Wesley Publishing Company, 1994.

[39] Genesereth, M. R., and Nilsson, N. J. Logic Foundations of Artificial Intelli-
gence. Morgan Kaufmann Publishers, Inc., 1987.

[40] Hammer, J., and McLeod, D. On the resolution of representational diversity in
multidatabase systems. In Management of Heterogeneous and Autonomous Database
Systems. Morgan Kaufmann, 1998, pp. 91–118.

178

[41] Hayes, P., and McBride, B., Eds. RDF Semantics. W3C Work-
ing Draft. World Wide Web Consortium (W3C), January 2003. Available:
http://www.w3.org/TR/2003/WD-rdf-mt-20030123, [Viewed: December 11, 2003].

[42] Hendersen-Sellers, B. Advanced OO modelling: Metamodels and notations for
the new millennium. In Proceedings of the 21st International Conference on Concep-
tual Modeling (ER) (2002), vol. 2503 of Lecture Notes in Computer Science, Springer-
Verlag, p. 11.

[43] Jarke, M., Eherer, S., Gallersdórfer, R., Jeusfeld, M. A., and Staudt,

M. ConceptBase – A deductive object base manager. Tech. rep., Aachener Informatik-
Berichte 93-14, 1995.

[44] Kiczales, G., Rivieres, J. D., and Bobrow, D. The Art of the Metaobject
Protocol. MIT Press, 1991.

[45] Kifer, M., Kim, W., and Sagiv, Y. Querying object-oriented databases. In
Proceedings of the ACM SIGMOD International Conference on Management of Data
(1992), ACM Press, pp. 393–402.

[46] Krishnamurthy, R., Litwin, W., and Kent, W. Language features for interop-
erability of databases with schematic discrepancies. In Proceedings of the 1991 ACM
SIGMOD International Conference on Management of Data (1991), ACM Press,
pp. 40–49.

[47] Lassila, O., and Swick, R. R., Eds. Resource Description Framework (RDF)
Model and Syntax Specification. W3C Recommendation. World Wide Web Con-
sortium (W3C), February 1999. Available: http://www.w3.org/TR/1999/REC-rdf-
syntax-19990222, [Viewed: December 11, 2003].

[48] Lausen, G., and Vossen, G. Models and Languages of Object-Oriented Databases.
Addison-Wesley, 1998.

[49] Lécluse, C., Richard, P., and Vélez, F. O2, an object-oriented data model. In
Proceedings of the 1988 ACM SIGMOD International Conference on Management of
Data (1988), ACM Press, pp. 424–433.

[50] Levy, A. Y., and Rousset, M.-C. Verification of knowledge bases based on con-
tainment checking. Artificial Intelligence 101, 1-2 (1998), 227–250.

[51] Levy, A. Y., and Sagiv, Y. Constraints and redundancy in Datalog. In Proceed-
ings of the Eleventh ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems (1992), ACM Press, pp. 67–80.

179

[52] Ludäscher, B., Gupta, A., and Martone, M. E. Model-based mediation with
domain maps. In Proceedings of the 17th International Conference on Data Engineer-
ing (ICDE) (2001), IEEE Computer Society, pp. 81–90.

[53] Luger, G. F. Artificial Intelligence: Structures and Strategies for Complex Problem
Solving (4th Edition). Addison-Wesley Publishing, 2002.

[54] Mark, L., and Roussopoulos, N. Integration of data, schema and meta-schema in
the context of self-documenting data models. In Proceedings of the 3rd International
Conference on Entity-Relationship Approach (ER) (1983), North-Holland, pp. 585–
602.

[55] Marshall, C. C., Shipman III, F. M., and Coombs, J. H. VIKI: Spatial hyper-
text supporting emergent structure. In European Conference on Hypertext Technology
(ECHT) (1994), ACM Press, pp. 13–23.

[56] McGuinness, D. L., and van Harmelen, F., Eds. OWL Web Ontology Language
Overview. W3C Candidate Recommendation. World Wide Web Consortium (W3C),
August 2003. Available: http://www.w3.org/TR/2003/CR-owl-features-20030818,
[Viewed: December 11, 2003].

[57] Miller, R. J. Using schematically heterogeneous structures. In Proceedings of the
ACM SIGMOD International Conference on the Management of Data (1998), ACM
Press, pp. 189–200.

[58] Mycroft, A., and O’Keefe, R. A. A polymorphic type system for Prolog. Arti-
ficial Intelligence 23, 3 (1984), 295–307.

[59] Mylopoulos, J., Borgida, A., Jarke, M., and Koubarakis, M. Telos: Rep-
resenting knowledge about information systems. ACM Transactions on Information
Systems 8, 4 (1990), 325–362.

[60] Noy, N., Fergerson, R., and Musen, M. The knowledge model of Protege-2000:
Combining interoperability and flexibility. In Proceedings of the 2nd International
Conference on Knowledge Engineering and Knowledge Management (EKAW) (2000),
vol. 1937 of Lecture Notes in Computer Science, Springer-Verlag.

[61] OMG. Meta Object Facility (MOF) Specification, September 1997. OMG
Document ad/97-08-14, Available: http://www.dstc.edu.au/Research/Projects/
MOF/Publications.html, [Viewed: December 11, 2003].

180

[62] Papakonstantinou, Y., Abiteboul, S., and Garcia-Molina, H. Object fusion
in mediator systems. In Proceedings of 22nd International Conference on Very Large
Data Bases (VLDB) (1996), Morgan Kaufmann, pp. 413–424.

[63] Papazoglou, M. P., and Russell, N. A semantic meta-modeling approach to
schema transformation. In Proceedings of the International Conference on Informa-
tion and Knowledge Management (CIKM) (1995), ACM Press, pp. 113–121.

[64] Parent, C., and Spaccapietra, S. Issues and approaches of database integration.
Communications of the ACM 41, 5 (May 1998), 166–178.

[65] Pepper, S., Ed. Requirements for a Topic Map Constraint Lan-
guage (Draft). ISO/IEC JTC 1/SC34: Information Technology – Doc-
ument Description and Markup Languages, April 2003. Available:
http://www.isotopicmaps.org/tmcl/requirements.html, [Viewed: December 11,
2003].

[66] Pepper, S., and Moore, G., Eds. XML Topic Maps (XTM) 1.0.
TopicMaps.Org Authoring Group, Specification, August 2001. Available:
http://www.topicmaps.org/xtm/1.0/xtm1-20010806.html, [Viewed: December 11,
2003].

[67] Popa, L., and Tannen, V. An equational chase for path-conjunctive queries, con-
straints, and views. In Proceedings of the 7th International Conference on Database
Theory (ICDT) (1999), vol. 1540 of Lecture Notes in Computer Science, Springer-
Verlag, pp. 39–57.

[68] Popa, L., Velegrakis, Y., Miller, R. J., Hernández, M., and Fagin, R.

Translating Web data. In Proceedings of the 28th International Conference on Very
Large Data Bases (VLDB) (2002), Morgan Kaufmann, pp. 598–609.

[69] Pottinger, R., and Bernstein, P. A. Merging models based on given corre-
spondences. In Proceedings of the 29th International Conference on Very Large Data
Bases (VLDB) (2003), Morgan Kaufmann, pp. 826–837.

[70] Rahm, E., and Bernstein, P. A. A survey of approaches for automatic schema
matching. The VLDB Journal 10, 4 (2001), 334–350.

[71] Ramakrishnan, R., and Gehrke, J. Database Management Systems, 3rd Edition.
McGraw Hill, 2003.

181

[72] Rath, H. H. The topic maps handbook. Tech. rep., empolis GmbH,
2003. Available: http://www.empolis.com/download/docs/whitepapers/
empolistopicmapswhitepaper eng.pdf, [Viewed: December 11, 2003].

[73] Reiter, R. Towards a logical reconstruction of relational database theory. In On
Conceptual Modeling, M. L. Brodie, J. Mylopoulos, and J. W. Schmidt, Eds. Springer-
Verlag, 1984.

[74] Shanmugasundaram, J., Tufte, K., He, G., Zhang, C., DeWitt, D., and

Naughton, J. Relational databases for querying XML documents: Limitations and
opportunites. In Proceedings of the 25th International Conference on Very Large Data
Bases (VLDB) (1999), Morgan Kaufmann, pp. 302–314.

[75] Sheth, A. P., and Larson, J. A. Federated database systems for managing
distributed, heterogeneous, and autonomous databases. ACM Computing Surveys
22, 3 (1990), 183–236.

[76] Shipman III, F. M., wei Hsieh, H., Maloor, P., and Moore, J. M. The visual
knowledge builder: A second generation spatial hypertext. In The 12th ACM Confer-
ence on Hypertext and Hypermedia (Hypertext 2001) (2001), ACM Press, pp. 113–122.

[77] Tian, F., DeWitt, D. J., Chen, J., and Zhang, C. The design and performance
evaluation of alternative XML storage strategies. SIGMOD Record 31, 1 (2002), 5–10.

[78] Torlone, R., and Atzeni, P. A unified framework for data translation over the
web. In Proceedings of the 2nd International Conference on Web Information Systems
Engineering (WISE) (2001), IEEE Computer Society, pp. 350–358.

[79] Tsichritzis, D. C., and Lochovsky, F. H. Data Models. Prentice-Hall, 1982.

[80] Ullman, J. D. Priniciples of Database and Knowledge-Base Systems, Volume II.
Computer Science Press, 1989.

[81] University of Amsterdam. SWI-Prolog. Available: http://www.swi-prolog.org/,
[Viewed: December 11, 2003].

[82] Woods, W. A. What’s in a link: Foundations for semantic networks. In Repre-
sentation and Understanding: Studies in Cognitive Science (1975), Academic Press,
pp. 35–82.

