
Merging Taxonomies under RCC-5 Algebraic Articulations∗

David Thau
Dept. of Computer Science

University of California
Davis, CA 95616

dthau@ucdavis.edu

Shawn Bowers
Genome Center

University of California
Davis, CA 95616

sbowers@ucdavis.edu

Bertram Ludäscher
Dept. of Computer Science &

Genome Center
University of California

Davis, CA 95616
ludaesch@ucdavis.edu

ABSTRACT
Taxonomies are widely used to classify information, and multiple
(possibly competing) taxonomies often exist for the same domain.
Given a set of correspondences between two taxonomies, it is of-
ten necessary to “merge” the taxonomies, thereby creating a uni-
fied taxonomy (e.g., that can then be used by data integration and
discovery applications). We present an algorithm for merging tax-
onomies that have been related using articulations given as RCC-5
constraints. Two taxa N and M can be related using (disjunctions
of) the five base relations in RCC-5: N ≡ M; N ! M; N " M;
N ⊕ M (partial overlap of N and M); and N ! M (disjointness:
N ∩ M = ∅). RCC-5 is increasingly being adopted by scientists
to specify mappings between large species taxonomies. We discuss
the properties of the proposed merge algorithm and evaluate our
approach using real-world biological taxonomies.

Categories and Subject Descriptors
I.2.4 [Artificial Intelligence]: Knowledge Representation Formalisms
and Methods; D.2.12 [Software Engineering]: Interoperability;
H.4.m [Information Systems Applications]: Miscellaneous

General Terms
Algorithms

Keywords
Taxonomies, Merging, Automated Deduction (Reasoning)

1. INTRODUCTION
Classification hierarchies, i.e., taxonomies, are a widely used ap-

proach for organizing various types of information [2, 32, 23]. For
example, in scientific disciplines, taxonomies have been used for
centuries to classify living organisms, and more recently, to species
based on their evolutionary history [7], proteins [27], diseases [6],
and genes [12], among others. It is common for similar information
∗Work supported by NSF awards DBI-0533368, BDI-0743429,
INTEROP-0753144, IIS-0630033.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ONISW’08, October 30, 2008, Napa Valley, California, USA.
Copyright 2008 ACM 978-1-60558-255-9/08/10 ...$5.00.

to be represented by multiple differing taxonomies. The differences
may be due to disagreement among experts, changes in how a field
is conceptualized, or because of overlaps within different fields of
study. Thus, to effectively use multiple, overlapping taxonomies
(e.g., for data discovery or integration), it is crucial to be able to
both represent and reason over their similarities and differences.

In this paper, we focus on merging multiple taxonomies based
on a given alignment [18, 9, 10, 15], i.e., a set of articulations
specifying the relationships among concepts (classes, taxa) in dif-
ferent taxonomies. Our work is motivated by taxonomies arising
in biological applications, e.g., where large species or phylogenetic
taxonomies have been created and the mappings (i.e., articulations)
between them constructed by one or more domain experts [19]. Un-
like other approaches focussed on general ontology alignment and
merging [8, 26, 20, 22, 34], we assume that articulations are given
as RCC-5 algebra constraints [29], which are often used for ex-
pressing set-based topological relations and are increasingly used
to specify articulations among species taxonomies [16].

The primary contribution of this paper is an algorithm for merg-
ing taxonomies in which the result of the merge operation is a new,
unified taxonomy that maintains links to the original sources. Our
approach has the following main advantages.

RCC-Based Articulations. Unlike the articulation relationships
supported in most alignment systems [26, 22, 21], articulations
using RCC-based relationships mirror the articulations seen in bi-
ological taxonomic alignments [19, 11]. For example, unlike in
many ontology approaches, the RCC algebra supports representa-
tion of incomplete knowledge via explicit disjunctive relationships
between taxa (e.g., taxon A is either disjoint from, or included in
taxon B). In addition, complexity analyses of the RCC algebra have
provided results showing when polynomial time reasoning is pos-
sible using the RCC relationships [14].

Merge Results as Taxonomies. Because the result of a merge is
itself a taxonomy, it becomes possible to apply various taxonomic
operations to it. For example, from a merged taxonomy we can
determine if the merge result adheres to specific taxonomic con-
straints, if it is logically consistent, if it contains synonyms, if it
contains uncertainty that can be reduced, or if it contains redundant
articulations.

Links to Original Sources. Merged taxonomies that contain links
to source taxonomies may be used by applications such as data
aggregators that combine observations of species from many data
sources (occurrence counts, height and weight measurements, etc.)
– where each source may use a different “field guide” (species tax-
onomy). For example, using a merged taxonomy, it becomes possi-
ble to: determine if two data sets contain observations of the same
species even when the species are described using different tax-

47

onomies; convert data sets into equivalent ones but with a different
taxonomy; and discover data sets via concepts drawn from familiar,
underlying taxonomies [8].

Simplified Taxonomic Views. A single merged taxonomy can also
help users trying to understand the effect of articulations between
source taxonomies. Although a large set of articulations might be
consistent, it still may be difficult to understand all implications
simply by considering pairwise combinations of taxa. Providing
a minimal “taxonomic” view of the product of the alignment can
help a user understand the impact of an alignment, and refine it as
necessary.

The rest of this paper is organized as follows. Section 2 pro-
vides a brief overview of the CT framework, upon which
our merge algorithm is based, and discusses related work, com-
paring our approach to those for general ontology-based alignment
and merging. Section 3 introduces features of a merge algorithm
that we see as important for systems utilizing biological taxonomy
alignments. Section 4 describes in more detail the CT frame-
work [36, 35], and presents our approach for merging taxonomies
within CT. Section 5 presents an initial implementation and
experimental results of our framework for the merging of two large
biological taxonomies as well as smaller examples highlighting in-
teresting features of our merge algorithm. Finally, Section 6 sum-
marizes the findings presented here and describes future work re-
lated to taxonomic merge operations.

2. RELATED WORK
The merge approach described in this paper is based on the C-

T framework [36, 35], in which a taxonomy T = (N,!N ,Φ)
is denoted by a set of taxa, or names, N (i.e., a set of concepts
or names1); a partial ordering relation on those taxa !N , denoting
an “isa” relation; and a set of additional taxonomic constraints Φ.
Each taxon is thought to be a set of instances (although the com-
plete extent of a taxon is typically not known). Each “isa” relation
between taxa translates to an implication; if A “isa” B, then all
things that are in A are also in B, i.e., A ⊆ B, or in predicate logic

∀x : A(x)→ B(x).

The additional taxonomic constraints Φ describe other set-based
relationships between taxa, e.g., stating that two given taxa are dis-
joint (share no instances), i.e.¬∃x : A(x)∧B(x). An articulation be-
tween taxa in different taxonomies is also a set-based relationship.
For instance, an articulation may state that two taxa are equivalent:
∀x : A(x) ↔ B(x), or that one taxon is properly contained within
another: ∀x : (A(x)→ B(x))∧∃y : B(y)∧¬A(y). Equivalence, dis-
jointness and proper inclusion are three of the five RCC-5 relations,
see Section 4.3 for details.

A merge operation in our approach takes as input a pair of tax-
onomies T1, T2 and a set of articulations between them A12, and
outputs a new taxonomy T3. In CT, taxonomies, articula-
tions, and additional taxonomic constraints are represented in first-
order logic and reasoning over these is performed via a first-order
reasoner (e.g., [38, 31]). This reasoning may discover inconsisten-
cies in the articulations, or may discover additional articulations.
Given a consistent alignment, a merge is then performed by com-
bining equivalent taxa, and creating a new taxonomy based on the
given and inferred articulations. The primary contributions are a
characterization and algorithm for the merge in this setting, and the
manner in which taxa are combined.
1Our taxon names are typically quantified with an authority, so we
use the terms (qualified, constrained) name and concept, synony-
mously.

Taxonomies may be seen as simplified ontologies. There has
been a considerable amount of work on merging ontologies. Much
of this work has focused on using instances [33], or lexical informa-
tion in the names and definitions of classes [21, 17] to automatically
generate articulations between concepts in separate ontologies. The
ontologies are then merged together based on these articulations.
The use of instances and lexical information in these systems dif-
fers from the work described here, which focuses specifically on
the structure of the taxonomies being merged (i.e., the concepts, or
taxa, and their relationships). Of the many tools and approaches
for ontology merging, the OntoMerge [8], Chimæra [25, 24], and
iPrompt [26] systems are most similar to CT.

In OntoMerge, the merge of two ontologies is the union of the
axioms defining the ontologies and the articulations between them.
The approach employed by OntoMerge is meant to assist in the
translation of data represented using terms from one ontology into
data that can be represented using another ontology. In addition to
data translation, OntoMerge is meant to support query answering
between ontologies, so that queries stated using terms of one ontol-
ogy may be rewritten into queries over other ontologies. In both of
these scenarios, the merge must maintain connections to the source
ontologies. Unlike CT, which uses relations drawn from the
RCC-5 algebra, articulations in OntoMerge are represented using
an enriched full first-order logic (WebPDDL). Whereas the current
implementation of CT uses monadic first-order logic, which
is decidable, OntoMerge uses a first-order reasoner called Onto-
Engine that performs forward and backward chaining to provide
data transformations between ontologies. The result of merging
ontologies in OntoMerge is represented as a set of first-order logic
formulas, whereas in our approach we always construct a new “uni-
fied” taxonomy T having the structure defined above. This taxon-
omy can further be simplified in our approach, resulting in taxo-
nomic merges that are often more intuitive and easier to understand
for end users (see Section 1).

The Chimæra and iPrompt systems differ from OntoMerge in
that their goal is primarily to create a new ontology from the source
ontologies. Chimæra and iPrompt’s merges often involve fusing
identical terms in the source ontologies into a new term, and de-
termining the subsumption and disjointness relations between the
classes in the separate ontologies. Unlike both CT and On-
toMerge, these systems are interactive, giving users hints about
how concepts in the separate ontologies may relate. Whereas C-
Trestricts articulations to relations covered by the RCC-5 alge-
bra, Chimæra and Prompt use frame-based and description-logic
based representation languages. Finally, unlike OntoMerge and
CT, Chimæra and iPrompt do not maintain the relationships
between source concepts and those in a merged ontology within
the merge (although iPrompt does maintain a separate file map-
ping sources to the merged ontology). Maintaining these source
relations is critical for applying merged taxonomies, e.g., for data
discovery and integration.

3. DESIDERATA
Below we describe a number of desirable features that we be-

lieve systems for creating, using, and managing taxonomy merges
should have, and briefly describe how they are supported by our
approach. These desiderata come primarily from the settings in
which we wish to apply CT, as well as those from more gen-
eral settings such as ontology merging, as described in the previous
section.

A goal of CT is to effectively represent large biological
taxonomies (such as classifying organisms via species taxonomies
or their evolutionary history via phylogenetic trees), and to pro-

48

A

B C

1

2 3

(a)

B C 2 3

(b)

!

T1 T2 M

!M = {B(x) "#A1(x), C(x) "#A1(x), B(x) "¬C(x),…}

(c)

! !
! !

[A,1]

Figure 1: Given the alignment in (a), the merge in (b) vio-
lates all the described desiderata, except for D5 (Closure). The
merge in (c) shows a violation of D5.

vide efficient reasoning services over them. In the case of species
taxonomies, one or more domain experts often specifies articula-
tions among taxonomies by hand, resulting in potentially tens of
thousands of articulations between any given pair of taxonomies.
This situation is compounded by the large number of taxonomies
that exist, often having overlapping and competing taxon defini-
tions. Thus, it is crucial for articulation providers to have tools that
allow them to easily express articulations, and to understand their
ramifications. Further, systems that manage taxonomies and artic-
ulations, or that use merged taxonomies to discover, translate, or
integrate data also introduce a number of requirements.

In the following, we assume two taxonomies T1 and T2, and a
set A12 of articulations between them. As described in Section 2,
taxonomies and articulations in CT are formalized as sets of
first-order formulas. For the taxonomies and articulations defined
above, we denote the union of their respective first-order formulas
as:

Φ12 = ΦT1 ∪ ΦT2 ∪ ΦA12 .

We denote the taxonomy T3 resulting from the the merge of T1 and
T2 as:

T3 = T1 ⊕A12 T2.

3.1 Desiderata of Merge Results
The following desiderata focus on desirable features of the out-

put (merge result) of a merge operation.

(D1) Conservative. The result of a merge should preserve all con-
sequences of the union of the source taxonomies and articulations.
Formally, if Φ12 |= ϕ, then T3 |= ϕ. When this is true, we can
say the merge result is conservative: what was true before is still
true—consequences are preserved. For example, the merge of the
alignment in Figure 1(a) shown in Figure 1(b) violates this desider-
ata because the disjointness between taxa 2 and 3 is not maintained.
One ramification of this desiderata is that it places restrictions on
merge operations that attempt to simplify the representation of the
merge result (i.e., it should still be possible to obtain all conse-
quences of the alignment via the simplified version of the result).

(D2) Sound. The result of a merge should not introduce conse-
quences that do not follow from the alignment. We consider two
different notions of soundness: soundness and soundness under re-
naming. In soundness, all inferences that follow from the merge
result should also be true of the alignment: if T3 |= ϕ then Φ12 |= ϕ.
Soundness is violated if the merge result includes new taxa that did
not appear in either of the source taxonomies; e.g., if the merge re-
sult includes new taxa representing the fusion of equivalent source

[A,1]

[C,2] [B,3]

A

B C

1

2 3

!

!

! [A,1]

[C,2] [B,3]

A

B

C

!

!

!

(a) (b) (c)

T1 T2 M M.T1

Figure 2: Projecting taxonomy 1 from the merge.

taxa. On the other hand, soundness under renaming is not violated
by taxa that have been introduced during the merge if these taxa are
equivalent to taxa in the original taxonomies. For example, if the
relation N " M′ (i.e., N is a proper superset of M′) is in the merge,
where N is a taxon in one taxonomy and M′ is a taxon created dur-
ing the merge, strict soundness will always be violated (because
M′ is not mentioned in either T1, T2, or A12). However, if M ≡ M′
where M is in one of the taxonomies, and N " M is a relation in the
original alignment, then soundness under renaming is not violated.
Figure 1(b) violates both soundness and soundness under renaming
because it introduces disjointness between taxa C and 2 and this
disjointness does not follow from the alignment in Figure 1(a).

(D3) Source Maintaining. Many of the use cases for a taxonomic
merge operator require a connection between the merged taxonomy
and the source taxonomies. This type of connection is required,
e.g., to translate data sets from one taxonomy to another. It is also
required to query one taxonomy using terms from a second. In both
of these cases, without the connection between the merged taxon-
omy and the sources, there would be no way to determine how the
terms in the source taxonomies relate to those in the merged tax-
onomy. Approaches such as OntoMerge [8] contain these types of
connections because the merged ontologies are precisely the for-
mulas derived from the source ontologies and articulations. Al-
ternatively, in approaches such as iPrompt [26], these connections
are maintained in a more indirect way, e.g., by recording the de-
cisions made during the creation of the merge result, or in a sep-
arate mapping file. However, the connections between source tax-
onomies and the merge result that are maintained using iPrompt’s
provenance-based mechanism are difficult to exploit in data trans-
lation tasks.

To help leverage the applicability of a source-maintaining merge
result, we introduce the “source projection” of a merged taxon-
omy. Given a merged taxonomy T3 derived from taxonomies T1
and T2 and articulations A12, the source projection (or simply pro-
jection) of the merge result provides linkages to the source tax-
onomies. For example, Figure 2(b) shows a merge of the alignment
in Figure 2(a). The projection of T1 from M in Figure 2(c), denoted
M.T1, shows how the taxa in M relate to the taxa in T1. Note that
projection does not recreate the entire source taxonomy. It simply
provides linkages from the merge to its sources. Figure 3 shows
how the projection might be used in a merge. Figure 3(a) shows
three taxonomies and two sets of articulations. After merging T1
and T2, the resulting taxonomy might look like M12 in Figure 3(b).
When the merge of M12 is attempted, the articulations in A23 can-
not apply because of the renamed nodes in M12, and there is no
known set of articulations between M12 and T3. To resolve this
mismatch between the taxa in M12 and those referenced in A23, T2
is projected from M12 in Figure 3(c), and this projection provides
connection points for the A23 articulations. More concisely,

M123 = ((T1 ⊕A12 T2).T2) ⊕A23 T3

49

[A,1]

[C,2] [B,3]

(b)

M12

[A,1]

[C,2] [B,3]

(c)

M12.T2

A

B C

1

2 3

T1 T2

(a)

!

!

!

1

3

2

!

!

!

X

Y Z

T3
!

!

!

T3

X

Y Z

T3

X

Y Z

!

!

!

A12 A23 AMT3
12

?

A23

Figure 3: Using the projection.

The merge in Figure 1(b) violates the source maintaining desider-
ata because there is no connection between taxon [A,1] in the merge
and either taxon A or 1. In other words, M.T1 cannot be calculated.

3.2 Desiderata of Merge Operations
The following desiderata focus on desirable properties of the

merge operation itself.

(D4) Closed. The result of a merge operator should be output as a
taxonomy. If the output of the merge operation is itself a taxonomy,
all of the operations that apply to taxonomies may also be automat-
ically applied to the merge result. These operations include check-
ing the merge result for consistency, displaying the result visually,
determining the minimal set of axioms to describe the merge result,
and potentially merging the result with additional taxonomies. The
set of logic axioms in Figure 1(c), though it may represent a merge
result that satisfies all other desiderata is not a taxonomy accord-
ing to our definition of a taxonomy; it has neither a specified set of
taxon names N, nor a specified partial order !N .

(D5) Associative and Commutative. Given a sequence of (e.g.,
binary) merge operations, the order in which the operations are ex-
ecuted should not matter: (T1⊕A12 T2) ⊕A23 T3 = T1⊕A12 (T2⊕A23 T3).
Besides being more intuitive for users, this desiderata is also impor-
tant for optimization within systems for managing taxonomies. For
example, if T2 and T3 have been merged in the past, and the result is
easily retrievable, it would be beneficial to be able use that cached
result when determining (T1 ⊕A12 T2) ⊕A23 T3. The merge result in
Figure 1(b) loses associativity in a merge like (T1 ⊕A12 T2) ⊕A23 T3
because taxon 1 in T2 no longer exists in the merge result; it is
replaced by taxon [A,1]. This replacement of taxon names means
the articulations in A23 involving taxon 1 from T2 will not apply
to the merged taxonomy resulting from T1 ⊕A12 T2, and so will
not be reflected in the subsequent merge with T3. Similarly, given
two taxonomies, the order in which they are provided in a merge
operation should not matter, i.e., commutativity should also hold:
T1 ⊕A12 T2 = T2 ⊕A21 T1. Finally, it is also desirable for a taxonomy
merged with itself to result in the original taxonomy, i.e., idempo-
tence should also hold: T1 ⊕A11 T1 = T1.

(D6) Minimal. A taxonomy free of redundant information is of-
ten easier to use and understand. For example, in the alignment in
Figure 4(a) could be merged as in Figure 4(b), however this merge
contains a great deal of redundant information. Combining equiv-

A

B C

1

2 3

!

!

!

(a)

A

B C

1

2 3

!

!

!

(b)

[A,1]

[B,3] [C,2]

(c)

Figure 4: Merging with and without fusing equivalent taxa.

alent nodes, as in Figure 4(c) eliminates the redundant information
and creates a merge that is easier to understand.

(D7) Scalable. As described above, merge operations should be
able to scale-up to large taxonomies, containing many articulations,
while preferably providing reasonable response-time, e.g., for ar-
ticulation providers so they can quickly see merge results, for sys-
tems managing taxonomies, and for systems performing taxonomy-
based data discovery, translation, and integration services.

In the following section, we describe the CT framework
in more detail, and present our CT merge algorithm which
satisfies each of the above desiderata.

4. TAXONOMY MERGING IN CLEANTAX
This section begins with a description of the representations used

to describe taxonomies and articulations in the CT frame-
work [36, 35]. It then describes the taxonomic merge operation
used within CT.

4.1 Taxa
A taxon (plural, taxa) represents a name, concept, or class. Each

taxon in CT is represented as a tuple (S ,C), where S rep-
resents a unique identifier for the source taxonomy in which the
taxon appears, and C represents the name of the taxon. We of-
ten refer to taxon names as unary objects. Following the example
of XML elements and their namespaces, these unary taxon names
may be constructed by prepending the taxon name with the unique
name of the source taxonomy.

4.2 Taxonomies
Taxonomies have traditionally been defined as a partial ordering

of taxa where the ordering relation denotes “inclusion” [5]. We
start with that definition here, and then show how it needs some
embellishment.

ISA-Hierarchies. Let a, b, · · · ∈ N be a set of taxa and !N a partial
order on N (i.e., ! is reflexive, transitive, and antisymmetric). We
interpret b ! a as ∀x.b(x) → a(x) or equivalently as b ⊆ a and call
H = (N,!N) an isa-hierarchy.2

Formally, we can view a hierarchy H = (N,!N) as a set of first-
order (FO) logic formulas:

ΦH = {∀x.b(x)→ a(x) | a, b ∈ N and b !N a}.
2If the partial order is strict, i.e., b ! a implies a ! b, then we write
H = (N,≺N) and call H a containment hierarchy. When viewed as
sets, we thus have b ! a. In this sense, containment hierarchies are
special isa-hierarchies.

50

Note that the signature of H consists only of unary predicate sym-
bols (the taxon names in N), i.e., σH = N. As shown, H is formal-
ized in monadic first-order logic (MFO).

Note that this definition allows multiple inheritance. For exam-
ple, consider N = {a, b, c, d} and !N= {ba, ca, db, dc}.3 This is a
well-formed hierarchy in the above sense, where, e.g., instances of
d are instances of both b and c.

Covering Relation. Taxonomies are often specified using the tran-
sitive reduction of the partial order !N , rather than the partial order
itself. For example, rather than giving the complete partial order
!N= {aa, bb, cc, dd, ba, ca, db, dc, da}, in CT the transitive
reduction of the relation is given {ba, ca, db, dc}.

Strictly speaking, this latter set is the covering relation

!N = {ba, ca, db, dc}

of !N . We write x ! y and say that x is covered by y, if x ≺ y and
there is no other z ∈ N with x ≺ z ≺ y. Since N is finite, for x ≺ y
there is a finite covering path x = x0 ! x1 ! · · · ! xn = y. Thus
the partial order !N determines, and is determined by the covering
relation !N .

Taxonomies. As described above, a taxonomy T = (N,!N ,Φ) con-
sists of a set of names N, a partial order (isa-hierarchy) !N , and a
set of constraints Φ over N. The latter contains for each c ! p in !N
a formula ∀x.c(x) → p(x). Note that axiomatizing ! instead of !N
in this way is sufficient, since logical implication P → Q is reflex-
ive, transitive and antisymetric. Φ may contain other constraints of
T as well. Typical constraints that might be in Φ include:
• non-emptiness: c ! ∅ (for some or all c ∈ N)
• sibling-disjointness: if c1 ! p and c2 ! p then c1 ∩ c2 = ∅
• parent coverage: p ⊆ c1 ∪ · · · ∪ cn (where all ci ! p)

When any of these constraints is applied to every applicable
taxon in a given taxonomy, we call the constraint a global taxo-
nomic constraint (GTC). These constraints are often implicitly as-
sumed in the context within which a taxonomy is presented, rather
than being explicitly stated in the definition of the taxonomy. One
of the primary benefits of the CT system is the ability to
explore the effects these constraints may have on reasoning and
merging across multiple taxonomies.

4.3 Articulations
CT uses the RCC-5 [29] topological algebra as the basis

for representing articulations. This algebra describes relationships
between sets, and supports the expression of incomplete knowledge
when stating articulations. Furthermore, the RCC-5 algebra has
been represented using first-order logic [29], propositional logic [3]
and description logic [37].

The RCC-5 algebra uses the same five basic relations (B5) as
several biological taxonomic alignments and taxonomic reasoning
systems [4, 19, 11]. Given any two non-empty sets N and M,
exactly one of the B5 relations holds (cf. Figure 5) between them:
(i) congruence (N ≡ M), (ii) proper inclusion (N ! M), (iii) proper
inverse inclusion (N " M), (iv) partial overlap (N ⊕ M), or (v)
exclusion (disjointness) (N ! M).

In general, the instances of N and M are not given, so disjunc-
tions of B5 are used to describe any (partial) knowledge about the
relation between N and M. The powerset R32 = 2B5 contains all 32
disjunctions obtainable from B5 relations. For example, an “isa”
relation N isa M captures the constraint N ⊆ M, i.e., either N is
properly contained in, or equal to M, which in turn corresponds to
a disjunction {≡,!} ∈ R32. The constraints in R32 form a lattice

3Strictly speaking this is not !N but its covering; see below.

with bottom element ⊥ = ∅, singleton relations (corresponding to
B5 relations) in layer-1, combinations of two disjuncts in layer-2,
three disjuncts in layer-3, etc., up to layer-5 with the (vacuously
true) top element 1 = {≡,!,",⊕, !}.

For any pair of taxa, N,M, many of the relations in R32 may hold.
For example, if N ≡ M is true, then so is N{≡,!}M. However,
there is a single distinguished relation in the R32 lattice that implies
all the relations that hold between any two taxa; the meet of the
R32 sublattice of true relations for those two taxa. We call this
the maximally informative relation mir. In general, we will only
discuss the mir relation between two taxa.

Articulations are converted into logic formulas (ΦA) in a straight-
forward way (e.g., see the rules given in [36]). Most of the relations
in R32 are bidirectional. However ! and " are not. We assume
here that the directional intent of ! and " are maintained when the
order of subscripts of A are reversed. In other words, if A12 con-
tains the articulation N1 ! N2, then A21 contains the articulation
N2 " N1. Similarly, if A12 contains the articulation N1{≡,!,⊕}N2
then A21 contains the articulation N2{≡," ⊕}N1. In this way, a set
of articulations can be inversed, e.g., allowing commutative merge
operations.

4.4 Taxonomies versus Ontologies
Taxonomies as defined here differ from standard description-

logic ontologies. Specifically, the taxa in our taxonomies have no
description logic style concept definitions like those often found in
ontologies. Furthermore, relations between taxa in our taxonomies
are restricted to set-theoretic relations, whereas roles between con-
cepts in taxonomies are considerably more flexible. The benefit of
these restrictions is the promise of greater computational tractabil-
ity. While reasoning in ontologies that conform to traditional
description logics, such as those underlying OWL-DL, have an
NEXP-Time complexity when answering satisfiability questions,
[30] has shown that while reasoning with all relations in R32 is an
NP-complete problem, reasoning with several subsets of the R32
relations can be performed in polynomial time. Additionally, these
set-theoretic relations are convenient for specifying articulations
among taxonomies; and more expressive than the isa, equivalence,
and disjoint constraints used commonly in ontology-based merging
approaches.

4.5 Merging Taxonomies
The merge algorithm begins by using a reasoner to calculate the

deductive closure of the union

ΦM = ΦT1 ∪ ΦT2 ∪ ΦΛ12

of the logic axioms describing the source taxonomies and the ar-
ticulations. This type of merge is much like that described in the
OntoMerge system [8], whose merge result is represented by the
set of logic statements rather than as a new taxonomy (i.e., violat-
ing the closure requirement of Section 3).

In CT, we construct a taxonomic merge by coercing ΦM
into the signature for a taxonomy T = (N,!N ,Φ). This step consists
of determining the taxa involved in the merged taxonomy, deriving
the transitive reduction of the partial order describing the relation-
ships between those nodes, and deriving the additional taxonomic
constraints.

We determine N,!, and Φ initially as follows. N is simply the
set of taxa that appear in the initial taxonomies. The transitive re-
duction ! is determined by constructing a graph of the taxa in N
where each taxon is a node, and there is a directed edge between
any two taxa N1 and N2 when the R32 relation ! or {≡,!} can be
deduced from the deductive closure. Once this graph has been con-

51

N M

(v) exclusion

N M

(iv) partial overlap

N M

(ii) proper
inclusion

M N

(iii) proper inverse
inclusion

N M

(i) congruence

Figure 5: B5 – the five basic relations N ≡ M, N ! M,N " M, N ⊕ M, N ! M between two sets N, M

structed, the transitive reduction may be determined using a stan-
dard transitive reduction algorithm [1]. Finally, Φ is simply the
union ΦT1 ∪ ΦT2 ∪ ΦΛ12 .

Once this initial taxonomy is formed, the final merge is created
by merging taxa found to be equivalent, due to provided or inferred
articulations.

We define an equivalence relation on N such that:

a ∼ b if Φ |= ∀x.a(x)↔ b(x),

where the equivalence class of a ∈ N is [a] = {x ∈ N | x ∼ a}. We
say that taxonomy T has synonyms if for some a, b ∈ N with a ! b
we have that a ∼ b; otherwise T is called synonym-free. Using
this definition we can construct a unique, synonym-free version of
the initial merge result. We call this simplified version a quotient
taxonomy T/∼ such that:

N/∼ = {[a] | a ∈ N},
!/∼ = {([a], [b]) | [a] ! [b] if a ! b},
Φ/∼ = {[ϕ] | ϕ ∈ Φ}.

Here for every FO formula ϕ, we define its quotient [ϕ] to be the
formula where each atom a(x) has been replaced by the atom [a](x).

We briefly describe how the above merge algorithm satisfies the
desiderata of Section 3. First, based on the deductive closure,
the results produced by the merge operation are conservative and
sound under renaming. Namely, all consequences of the union of
the source taxonomies and articulations are preserved, and no new
information has been added to the merge result that could not be
derived from the original taxonomies and articulations, where each
taxon in N/∼ is equivalent to at least one source taxon. Merge re-
sults are also source maintaining. In a quotient taxonomy, each
taxon [a] = {x1, x2, . . . } for a ∈ N/∼ implicitly carries its linkages
to corresponding source taxa, where the source projection opera-
tion simply selects the desired source taxa of [a]. For instance,
for the [A,1] taxon in Figure 4(c), N = [T1.A, T2.1] such that the
source projection M.T1 is {(M.A1, T1.A), (M.B3, T1.B), (M.C2,
T1.C)}. This projection can then be either rendered into a set
of first-order axioms, or can be used to rewrite a set of articula-
tions. In the former case, each pair in the projection (m, n) would
add an axiom ∀x.m(x) ↔ n(x) to Φ. In this case we can define
(T1 ⊕A12 T2).T2 = (NM ∪ NT2 ,!TM ,ΦM ∪ ΦM.T2). In the latter case,
each taxon in the set of articulations matching the second element
of a pair in the projection will be replaced with the name of the first
element of that pair.

Furthermore, the merge operation itself is closed since it results
in a taxonomy T as defined above. The merge is also commuta-
tive since it is possible to invert a set of articulations, and similarly
associative under source projection. For quotient taxonomies, the
merge operation is idempotent. That is, given two identical quotient
taxonomies the same quotient taxonomy is returned.4 Quotient tax-
onomies can be considered minimal views being synonym-free and

4Note that it is also straightforward to convert source taxonomies
into corresponding quotient taxonomies.

consisting of the transitive reduction. And finally, as we describe
further in the following section, the merge operation can scale-up
to large taxonomies, in part due to CT’s use of RCC con-
straints.

5. EXPERIMENTS AND DISCUSSION
We have implemented the merge algorithm above within the

CT system and have tested our approach using a data set
of nine aligned taxonomies for the plant genus Ranunculus [28].
The experiments described below used the two largest taxonomies,
one covering 218 taxa and the other covering 142 taxa, and 206
articulations between them created by a domain expert. Each tax-
onomy is three levels deep covering the genus, species, and variety
biological ranks.

The first step in creating the merge is translating the taxonomies
and articulations into monadic first-order logic and determining all
the relationships implied by the resulting axioms. As described
in earlier work [35], this step is currently expensive, taking ap-
proximately 8 hours (using Prover9 [38]) to determine the relations
between each pair of taxa in the two described taxonomies. We ex-
pect future optimizations to reduce this time significantly (e.g., see
[36, 35]). Once these calculations have been made, the merge is
computed very quickly. The limiting factor of the algorithm is the
calculation of the transitive reduction, for which we used the tred
filter that comes with the graphviz software package 5. Tred uses
a depth-first search algorithm of complexity O(V ∗ E) [1, 13]. In
the current context, V is the number of taxa and E is the number
of articulations describing inclusion (either N ! M, or N{≡,!}M)
maximally informed relations (mir). The other steps of the algo-
rithm are O(E) where E is the number of mir articulations. On
average (after 5 runs with little variance between them) merging
the two taxonomies described above took 84 milliseconds, 62% of
which was spent determining the transitive reduction.

A primary advantage of the CT framework is the ability
to apply a variety of taxonomic constraints when reasoning and
merging across taxonomies. As mentioned in Section 4, these con-
straints are often unstated when taxonomies are presented, and the
application of different constraints can lead to different results in
reasoning and merging tasks. Unfortunately, most of the traditional
taxonomic constraints we applied to the taxonomies described
above resulted in a logically inconsistent alignment. The only con-
straint that was successfully applied was the non-emptiness con-
straint, which led to few interesting new articulations. To get a
better sense for the impact of these taxonomic constraints, we di-
vided the taxonomies into sub-taxonomies, each involving a species
in one taxonomy and all the below-genus taxa connected to it in
both taxonomies. Of the 81 sub-taxonomies thus created, 75 were
consistent under all three of the global taxonomic constraints: non-
emptiness, sibling-disjointness, and parent coverage. Calculating
the merge for these smaller sub-taxonomies, which contained on
average 8 taxa each, took on average 18 milliseconds, 99% of
which was spent determining the transitive reduction.
5http://www.research.att.com/sw/tools/graphviz/

52

A

B C D

Benson, 1948

E

G

Kartesz, 2004

F IH

KJ

[A]

[D,J]

Merge assuming no additional
constraints

[B,K] [E][C]

[G][F] [I][H]

[B,K]

[A]

[D,J][C]

[F] [H][G]

[E]

[I]

Merge assuming non-emptiness,
sibling-disjointness, and coverage

!!!!

!

!

!

(a)

(b) (c)

Figure 6: Merging Ranunculus hispidus under different as-
sumptions. For clarity, the disjointness relations between taxa
in (c) are not shown. See text for further detail.

A

B C

1

2 3

(a)

[A,1]

B C 2 3

(b)

!

T1 T2

! ! ! !

Figure 7: Constraints placed on taxonomies before the merge
may not apply to the result of the merge.

Figure 6 shows the impact of the constraints on the merge of
one of these sub-taxonomies. The two sub-taxonomies for the
species Ranunculus hispidis and their articulations are shown in
Figure 6(a). When no additional assumptions are made, the merge
results in Figure 6(b). It is important to recognize that in Fig-
ure 6(b), the lack of an edge between two taxa represents the situa-
tion where either a transitive edge has been removed in the transi-
tive reduction or nothing is known about the relationship between
the taxa. Thus, in Figure 6(b) the relationship between taxa [C] and
[E] is completely unknown. Applying the non-emptiness constraint
to all the taxa in the taxonomies results in the additional knowledge
that taxa [C] and [E] are not disjoint.

Figure 6(c) represents the merge when the sibling-disjointness,
coverage and non-emptiness constraints are assumed. In this
merge, the taxon labeled [E] becomes a child of [C]. For clarity,
the many disjointness relations between taxa in Figure 6(c) are not
shown: the taxa [F], [G], [H], and [I] are mutually disjoint, the taxa
[B,K], [C], and [D,J] are mutually disjoint, and each child of [E] is
disjoint from [B,K] and [D,J].

It is important to note that when GTCs are applied to the tax-
onomies being merged, they are not automatically applied to the
result of the merge. For example, in Figure 7, although the two

taxonomies shown in (a) both exhibit the sibling disjointness con-
straint, the resulting merge in (b) does not; nothing is known about
the relationship between taxa C and 2, for instance. Applying the
sibling-disjointness constraint to the merged result would be adding
additional information, violating the soundness desideratum. If the
articulation provider expects taxa C and 2 to be disjoint, this artic-
ulation must be added to the alignment in Figure 7(a).

6. CONCLUSIONS
We have presented a formal approach for merging taxonomies

within the CT system. This work is motivated by current
problems in managing, integrating, and exploiting large biologi-
cal classifications including species taxonomies. As such, we have
also identified a number of requirements related to merging tax-
onomies, and have described how our proposed merge approach
satisfies them. We have also presented initial experimental results
of an implementation of our merge approach, using a number of
real-world species taxonomies and articulations created by a do-
main expert. Our findings suggest that the merge approach is well
suited for handling large taxonomies and complex sets of articula-
tions.

Comparing the merge component of CT to systems de-
scribed earlier, notably OntoMerge, iPrompt and Chimæra is not
straightforward. For example, OntoMerge does not have an ex-
plicit merge phase to compare with the CT merge. iPrompt
and Chimæra are interactive systems in which users merge ontolo-
gies by iteratively creating articulations and performing the merge,
whereas the CT merge assumes a set of articulations has
been provided and performs the merge in one step. In all cases,
the languages used for representing articulations differ. However,
some comparison of the CT merge with that of these other
systems is necessary, and part of our future work will involve de-
termining a reasonable means for making this comparison.

In addition, we plan to develop optimization strategies for the
CT framework (as discussed in Section 5); apply the C-
T framework and merge approach to enable data translation,
query rewriting, and search-result ranking; and finally to support
the resolution of alignment inconsistencies and to reduce uncer-
tainty within taxonomies and taxonomic alignments.

7. REFERENCES
[1] A. V. Aho, M. R. Garey, and J. D. Ullman. The transitive

reduction of a directed graph. SIAM J. Comput.,
1(2):131–137, 1972.

[2] K. D. Bailey. Typologies and Taxonomies: An Introduction to
Classification Techniques. Sage Publications, Inc, 1994.

[3] B. Bennett. Spatial reasoning with propositional logics. In
J. Doyle, E. Sandewall, and P. Torasso, editors, KR’94:
Principles of Knowledge Representation and Reasoning,
pages 51–62. Morgan Kaufmann, San Francisco, California,
1994.

[4] W. G. Berendsohn. MoReTax – Handling Factual
Information Linked to Taxonomic Concepts in Biology.
Number 39 in Schriftenreihe für Vegetationskunde.
Bundesamt für Naturschutz, 2003.

[5] R. Brachman. What is-a is and isn’t: An analysis of
taxonomic links in semantic networks. IEEE Computer,
16:30–36, 1983.

[6] R. Côté, D. Rothwell, and L. Brochu, editors. SNOMED
international : the systematized nomenclature of human and
veterinary medicine. College of American Pathologists,
Northfield, Ill., 3rd edition, 1993.

53

[7] W. F. Doolittle. Phylogenetic classification and the universal
tree. Science, 284(5423):2124–2128, 1999.

[8] D. Dou, D. McDermott, and P. Qi. Ontology translation on
the semantic web. In International Conference on
Ontologies, Databases and Applications, 2004.

[9] M. Ehrig. Ontology Alignment: Bridging the Semantic Gap,
volume 4 of Semantic Web And Beyond Computing for
Human Experience. Springer, 2007.

[10] J. Euzenat. State of the art on ontology alignment.
http://www.starlab.vub.ac.be/publications/kweb-223.pdf,
2004.

[11] N. M. Franz, R. K. Peet, and A. S. Weakley. On the use of
taxonomic concepts in support of biodiversity research and
taxonomy. Proceedings of the New Taxonomy Symposium,
2006.

[12] S. Henikoff, E. A. Greene, S. Pietrokovski, P. Bork, T. K.
Attwood, and L. Hood. Gene families: The taxonomy of
protein paralogs and chimeras. Science, 278(5338):609–614,
1997.

[13] Y. E. Ioannidis and R. Ramakrishnan. An efficient transitive
closure algorithm. In Proc. of the 14th International
Conference Very Large Databases, pages 382–394, 1988.

[14] P. Jonsson and T. Drakengren. A complete classification of
tractability in RCC-5. Journal of Artificial Intelligence
Research, 6:211–221, 1997.

[15] J. J. Jung. Taxonomy alignment for interoperability between
heterogeneous digital libraries. In S. Sugimoto, J. Hunter,
A. Rauber, and A. Morishima, editors, ICADL, volume 4312
of Lecture Notes in Computer Science, pages 274–282.
Springer, 2006.

[16] J. Kennedy, R. Kukla, and T. Paterson. Scientific names are
ambiguous as identifiers for biological taxa: Their context
and definition are required for accurate data integration. In
2nd Intl. Workshop on Data Integration in the Life Sciences
(DILS), LNCS 3615, pages 80–95, July 2005.

[17] J. Kim, M. Jang, Y.-G. Ha, J.-C. Sohn, and S.-J. Lee. MoA:
OWL ontology merging and alignment tool for the semantic
web. In M. Ali and F. Esposito, editors, IEA/AIE, volume
3533 of Lecture Notes in Computer Science, pages 722–731.
Springer, 2005.

[18] M. Klein. Combining and relating ontologies: an analysis of
problems and solutions. In A. Gomez-Perez, M. Gruninger,
H. Stuckenschmidt, and M. Uschold, editors, Workshop on
Ontologies and Information Sharing, IJCAI’01, Seattle,
USA, 2001.

[19] M. Koperski, M. Sauer, W. Braun, and S. Gradstein.
Referenzliste der Moose Deutschlands, volume 34.
Schriftenreihe Vegetationsk, 2000.

[20] K. Kotis and G. A. Vouros. The HCONE approach to
ontology merging. In C. Bussler, J. Davies, D. Fensel, and
R. Studer, editors, ESWS, volume 3053 of Lecture Notes in
Computer Science, pages 137–151. Springer, 2004.

[21] K. Kotis, G. A. Vouros, and K. Stergiou. Towards automatic
merging of domain ontologies: The HCONE-merge
approach. J. Web Sem., 4(1):60–79, 2006.

[22] P. Lambrix and H. Tan. SAMBO - a system for aligning and
merging biomedical ontologies. J. Web Sem., 4(3):196–206,
2006.

[23] C. Linnaeus. Systema Naturae. Laurentii Salvii, Stockholm,
1758.

[24] D. L. McGuinness, R. Fikes, J. Rice, and S. Wilder. The
Chimaera ontology environment. In AAAI/IAAI, pages
1123–1124. AAAI Press / The MIT Press, 2000.

[25] D. L. McGuinness, R. Fikes, J. Rice, and S. Wilder. An
environment for merging and testing large ontologies. In
Proc. of the Seventh International Conference on Principles
of Knowledge, Breckenridgeand Coloradoand United States,
April 2000.

[26] N. F. Noy and M. A. Musen. The PROMPT suite: interactive
tools for ontology merging and mapping. International
Journal of Human-Computer Studies, 59(6):983–1024, 2003.

[27] C. Orengo, A. Michie, S. Jones, D. Jones, M. Swindells, and
J. Thornton. CATH - a hierarchic classification of protein
domain structures. Structure, 5(8):1093–1108, aug 1997.

[28] R. K. Peet. Ranunculus data set. June 2005.
[29] D. A. Randell, Z. Cui, and A. Cohn. A spatial logic based on

regions and connection. In B. Nebel, C. Rich, and
W. Swartout, editors, KR’92. Principles of Knowledge
Representation and Reasoning: Proceedings of the Third
International Conference, pages 165–176. Morgan
Kaufmann, San Mateo, California, 1992.

[30] J. Renz and B. Nebel. On the complexity of qualitative
spatial reasoning: A maximal tractable fragment of the
region connection calculus. Artif. Intell., 108(1-2):69–123,
1999.

[31] A. Riazanov and A. Voronkov. The design and
implementation of VAMPIRE. AI Commun.,
15(2-3):91–110, 2002.

[32] S. S. Staff. Soil taxonomy. A basic system of soil
classification for making and interpreting soil surveys.
Number 436 in Soil Conservation Service Agricultural
Handbook. United States Department of Agriculture, 1975.

[33] G. Stumme and A. Maedche. FCA-MERGE: Bottom-Up
Merging of Ontologies. In Proc. of the 17th International
Joint Conference on Artificial, pages 225–234, 2001.

[34] G. Stumme and A. Maedche. Ontology merging for
federated ontologies on the semantic web, 2001.

[35] D. Thau. Reasoning about taxonomies and articulations. In
Workshop Proceedings of the 11th International Conference
on Extending Database Technology. ACM, 2008.

[36] D. Thau and B. Ludäscher. Reasoning about taxonomies in
first-order logic. Ecological Informatics, 2(3):195–209,
2007.

[37] M. Wessel. On spatial reasoning with description
logics-position paper. In I. Horrocks and S. Tessaris, editors,
Proceedings of the International Workshop in Description
Logics, pages 156–163, Touluse, France, April 2002. CEUR
Workshop Proceedings.

[38] W.W.McCune. Prover 9:
http://www.cs.unm.edu/ mccune/prover9/, July 2008.

54

