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Abstract. Fine-grained dependencies within scientific workflow prove-
nance specify lineage relationships between a workflow result and the in-
put data, intermediate data, and computation steps used in the result’s
derivation. This information is often needed to determine the quality and
validity of scientific data, and as such, plays a key role in both prove-
nance standardization efforts and provenance query frameworks. While
most scientific workflow systems can record basic information concerning
the execution of a workflow, they typically fall into one of three categories
with respect to recording dependencies: (1) they rely on workflow com-
putation steps to declare dependency relationships at runtime; (2) they
impose implicit assumptions concerning dependency patterns from which
dependencies are automatically inferred; or (3) they do not assert any
dependency information at all. We present an alternative approach that
decouples dependency inference from workflow systems and underlying
execution traces. In particular, we present a high-level declarative lan-
guage for expressing explicit dependency rules that can be applied (at
any time) to workflow trace events to generate fine-grained dependency
information. This approach not only makes provenance dependency rules
explicit, but allows rules to be specified and refined by different users as
needed. We present our dependency rule language and implementation
that rewrites dependency rules into relational queries over underlying
workflow traces. We also demonstrate the language using common types
of dependency patterns found within scientific workflows.

1 Introduction

A key feature of scientific workflow systems is their ability to record workflow ex-
ecution events at runtime, which can be used to establish various types of prove-
nance relationships. Common events that are observed and recorded by workflow
systems include the computational steps that were invoked as part of a workflow
run as well as the data that were input to and output by each step. Record-
ing these types of events in most workflow systems is straightforward, however,
recording detailed provenance dependency relationships presents a number of
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challenges. For instance, determining the sequence of computations performed
to produce a data result requires understanding the fine-grained dependencies of
step outputs on step inputs, which generally requires an understanding of how
the underlying computation of the step is performed. While recent approaches [3]
have begun to incorporate so-called “white-box” components into workflows—
i.e., steps implemented in languages from which dependencies can be inferred,
such as SQL and other database manipulation languages—workflow systems typ-
ically treat computation steps as “black-boxes” in which very little is known or
assumed regarding the underlying implementation of steps.

Scientic workflow systems generally adopt one of three approaches for as-
serting provenance dependencies: (1) they rely on workflow computation steps
to declare dependency relationships at runtime (e.g., see [5]); (2) they impose
implicit assumptions concerning dependency patterns from which dependencies
are automatically inferred (e.g., see [10,2,9,14]); or (3) they do not assert any
dependency information at all. Relying on workflow steps to declare provenance
relationships can be problematic, e.g., it requires a well-defined API for record-
ing dependencies and can add considerable overhead to each step (e.g., [4]). Also,
not all computational steps of interest may declare, or declare correctly, the de-
pendencies introduced by executing the step. The use of implicit rules can be
equally problematic. For example, depending on the underlying model of com-
putation employed by a workflow system and the complexity of workflow steps,
establishing implicit rules regarding dependency relationships can often lead to
incomplete and incorrect dependency assertions (e.g., see [4,14]).

Contributions. In this paper, we describe approaches for inferring data de-
pendencies from workflow execution traces based on explicit user-defined rules
as opposed to implicit rules assumed by a workflow system or dependencies
declared by computation steps. We propose a high-level language for express-
ing user-defined dependency rules that can be applied (at any time) to workow
trace events to generate fine-grained dependency information. This approach
takes the burden of determining provenance dependencies off of workflow sys-
tems, and allows rules to be specified and refined by different users (such as
workflow developers) as needed. We present a dependency rule language and a
formal implementation that converts high-level dependency rules into relational
queries over an underlying workflow trace model. We also demonstrate the ex-
pressivity of the language by using the language to define common types of
dependency patterns found within scientific workflows. Our approach is compat-
ible with existing provenance standardization efforts such as OPM [16] and the
W3C Prov effort [1]. In particular, both of these approaches focus on represent-
ing fine-grained data dependencies, and our approach can be used to compute
these dependencies from underlying workflow execution traces.

Organization. This paper is organized as follows. Section 2 describes an ab-
stract, minimal model for describing workflows, workflow traces, and data de-
pendencies. The model is used in Section 3 as the foundation for our declarative
provenance rule language. Section 3 also describes an implementation of our
approach that stores execution traces within a relational schema and converts
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Fig. 1. (a) An example workflow specification, (b) an execution showing the first in-
vocation step of each actor, and (c) the corresponding data dependencies.

provenance rules into queries over schema instances. We also give examples of
common dependency patterns and show how these patterns are captured using
the declarative rule language of Section 3. Related work is presented in Section 4
and we summarize our contributions in Section 5.

2 Workflows, Traces, and Dependencies

This section describes a minimal set of observables that must be recorded by a
workflow system to apply the user-defined dependency rules of Section 3. Ob-
servables are defined as part of an abstract model, and a specific (relational)
implementation of the model is given in Section 3. The abstract model is di-
vided into three distinct layers: workflow specifications, workflow traces, and
fine-grained data dependencies.

Figure 1a shows a simple example workflow. In the abstract model, work-
flows consist of actors (which define types of steps), actor parameters, and actor
channels. Actor parameters are designated as input, output, or state variables.
Actor inputs receive (or read) data items, outputs produce (or write) data items,
and state parameters maintain data across actor invocations (or “firings”). Actor
channels define dataflow between two actors, connecting one output parameter
of an actor to one input parameter of an actor. Workflow specifications in the
abstract model are defined more formally as follows.
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Definition 1. A workflow specification W = (A,P,C, σ) is a 4-tuple consisting
of actor names A, parameter names P , dataflow channels C, and a signature
function σ : A→ 2P×{in,out,state} that maps actors to their corresponding input,
output, and state parameters. Each parameter in the signature of an actor must
have a unique name, i.e., for each actor a ∈ A, if (p, r1) ∈ σ(a) and (p, r2) ∈ σ(a)
then r1 = r2. We often write a.p to refer to the (unique) parameter p of actor a.
Let Ain and Aout be the input and output parameters, respectively, of actors in
W , i.e., Ain = {a.p | a ∈ A∧(p, in) ∈ σ(a)} and Aout = {a.p | a ∈ A∧(p, out) ∈
σ(a)}. The (directed) dataflow channels are defined as the set C ⊆ Aout × Ain

connecting output parameters of actors in A to input parameters of actors in A.

For dependency inference rules, we only assume the presence of actor sig-
natures (i.e., actor parameters and whether they represent inputs, outputs, or
state). Channels are not required to apply the inference rules, and are included in
the abstract model to provide a more complete view of a workflow specification.
The following example describes the workflow in Figure 1a using the abstract
model.

Example 1. Consider the workflow W of Figure 1a in which the first actor reads
data from a file; the second actor produces a normalized value from each value
read (where a and b are the min and max values, respectively); the third actor
performs a low-pass filter (i.e., outputs items received if they are less than a
given cutoff value); and the last actor writes data to a file. Using Definition 1,
this workflow can be represented as follows.

W = (A,C, σ)

A = {source, normalize, filter, write}
C = {(source.y, normalize.x), (normalize.y, filter.x),

(filter.y, sink.x)}
σ(source) = {(f, in), (y, out)}

σ(normalize) = {(x, in), (y, out), (a, in), (b, in)}
σ(filter) = {(x, in), (y, out), (c, in)}
σ(sink) = {(x, in), (f, in)}

Here, source.f gives the filename that data is to be read from, filter.c gives
the cutoff value, and sink.f gives the filename that data is written to.

A trace of a workflow execution in the abstract model consists of a set of
actor invocations, called steps, and their corresponding parameter updates (i.e.,
changes in parameter values). Thus workflow systems that conform to the model
must be able to observe and must record both invocations and parameter up-
dates, which are both recorded by the majority of provenance-aware workflow
systems today [6,17,7]. In addition, we require only a relative order on parameter
updates within actor invocations (i.e., order information across actor invocations
is not required), and this information is typically provided by workflow systems
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using various forms of timestamps. Workflow execution traces in the abstract
model are defined more formally as follows.

Definition 2. A trace T = (S,U) of a workflow W is a pair consisting of actor
steps S and their corresponding parameter updates U . In particular, S ⊆ A×N
such that for a step s ∈ S, s = (a, i) denotes an invocation step of actor a, which
we typically write as a:i. No ordering constraints are placed on steps, i.e., a:i
may or may not have executed before a:(i+1). Similarly, U ⊆ S × P ×D × N
is the set of parameter updates, where D is the set of data items produced by
the workflow such that an update u = (s, p, d, j) in U denotes the j-th update
of step s = a:i in which the parameter a.p was set to data item d. Updates are
partially ordered for a given step. Further, each update of a specific parameter
in a step must have a unique order, i.e, if (s, p, d1, i) ∈ U and (s, p, d2, i) ∈ U ,
then d1 = d2.

The only constraints placed on an execution trace with respect to a workflow
specification is that all actor updates are for actors and parameters defined in
the corresponding actor signatures. While it is possible to add additional con-
straints, these would largely be based on the computation model employed by an
underlying workflow system. While most workflow systems adopt computation
models based on dataflow, they often have slight differences. Examples include
whether the same data item is allowed to be “written” (i.e., part of an update
to an output parameter) multiple times, the number of data items that can be
passed between actor invocations, and whether workflow channels define “strict”
constraints on data passing (for a non-strict approach see [12]). It may also be
the case that a workflow is not fully specified, or can be adapted during work-
flow execution. Thus, for generality, the abstract model does not presuppose any
particular model of computation. The following example demonstrates how an
execution (shown in Figure 1b) of the example workflow in Figure 1a can be
described in the abstract model.

Example 2. Consider the example workflow execution shown in Figure 1b. This
execution can be represented according to Definition 2 using a trace T as follows.

T = (S,U)

S = {source:1, normalize:1, filter:1, sink:1}
U = {(source:1, f, d1, 1), (source:1, y, d2, 2), (normalize:1, x, d2, 1)

(normalize:1, a, d3, 2), (normalize:1, b, d4, 3), (normalize:1, y, d5, 4)

(filter:1, x, d5, 1), (filter:1, c, d6, 2), (filter:1, y, d7, 3)

(sink:1, x, d7, 1), (sink:1, f, d8, 2)}.

Traces in the abstract model can be mapped to OPM provenance graphs
[16]. In particular, actor invocations are similar to OPM processes, data items
are similar to OPM artifacts, updates to input parameters define OPM used

edges, and updates to output parameters define OPM wasGeneratedBy edges.
OPM wasTriggeredBy edges can be obtained as follows. Assume a trace T =
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(S,U) of a workflow W = (A,C, σ) such that a1, a2 ∈ A, (p1, out) ∈ σ(a1),
and (p2, in) ∈ σ(a2). A wasTriggedBy edge exists between steps a1:i1 and a2:i2
whenever there exists updates (a1:i1, p1, d, j1) ∈ U and (a2:i2, p2, d, j2) ∈ U .

Dependency inference rules are used to infer fine-grained lineage dependencies
from a given workflow trace. A lineage dependency is represented in the abstract
model as a directed edge over trace updates. Thus, a dependency graph can be
viewed as a separate graph of lineage edges “superimposed” over a trace (e.g., see
Figure 1c). Fine-grained dependency graphs in the abstract model are defined
more formally as follows.

Definition 3. Data (lineage) dependencies L ⊆ U × U over a workflow trace
T = (S,U) form a directed acyclic dependency graph, where each (u2, u1) ∈ L
states that the update u2 depended on the update u1 (i.e., u1 was a dependency

of u2). We often write u1
ddep←−−− u2 to denote that u2 depended on u1, i.e., that

(u2, u1) ∈ L. The following additional restrictions are placed on dependency
edges in L. Given updates u1 = (s1, p1, d1, t1) and u2 = (s2, p2, d2, t2) in T , if

u1
ddep←−−− u2 then

1. u1 and u2 must be updates of the same step, i.e., s1 = s2;
2. update u1 must occur before update u2, i.e., t1 < t2; and
3. u2 must be either an output or state parameter such that if u2 is an output,

u1 must be an input or state parameter, and if u2 is a state parameter then
u1 can be an input, output, or state parameter, i.e., if W = (A,P,C, σ) is the
workflow corresponding to T where s1 = a:i, (p1, r1) ∈ σ(a), and (p2, r1) ∈
σ(a), one of the following must be true: r2 = out and r1 ∈ {in, state}, or
r2 = state and r1 ∈ {in, out, state}.

Dependencies in L correspond to OPM’s wasDerivedFrom edge. Specifically,
a wasDerivedFrom edge exists from data item d2 to data item d1 whenever

u1
ddep←−−− u2 for u1 = (s, p1, d1, t1) and u2 = (s, p2, d2, t2). The following example

demonstrates how the dependencies in Figure 1c can be represented within the
abstract model.

Example 3. Figure 1c shows the data dependencies introduced by the workflow
execution of Figure 1b. These dependencies can be represented using Definition 3
as follows:

L = {(normalize:1, x, d2, 1)
ddep←−−− (normalize:1, y, d5, 4),

(normalize:1, a, d3, 2)
ddep←−−− (normalize:1, y, d5, 4),

(normalize:1, b, d4, 3)
ddep←−−− (normalize:1, y, d5, 4),

(filter:1, x, d5, 1)
ddep←−−− (filter:1, y, d7, 3),

(filter:1, c, d6, 2)
ddep←−−− (filter:1, y, d7, 3)}.

Finally, we expand the notion of dependency above to consider four different
kinds of possible dependency relationships among updates. First, we define the
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set of data items D = Dval ∪ Did to be the union of the disjoint sets of data
values Dval and data identifiers Did (where identifiers correspond, e.g., to OPM
artifacts or “tokens” in the dataflow model [8] that wrap underlying values).
For each data identifier did ∈ Did the function v : Did → Dval gives the value
v(did) of did. We do not assume any additional constraints on the interpretation
of values, where values can be primitive data elements (like numbers or strings)
or references to external data items.

Definition 4. Given a dependency set L, data derivations Lder, value-copy
derivations Lval, and identifier-copy derivations Lid are subsets of L such that

Lid ⊆ Lval ⊆ Lder ⊆ L. If (u2, u1) ∈ Lder (denoted u1
dder←−−− u2) then the

data value of update u1 was involved in the derivation of the data value of up-
date u2. Derivation is a stronger assertion of lineage than dependency alone: if
(u2, u1) ∈ L but (u2, u1) 6∈ Lder then the presence of u1 led to the presence of
u2, but the value of u1 was not used in this process. If (u2, u1) ∈ Lval (denoted

u1
dval←−−− u2) then the value of update u2 was copied from the value of update

u1. Similarly, if (u2, u1) ∈ Lid (denoted u1
did←−− u2) then the identifier of up-

date u2 was copied from the identifier of update u1. Thus, if u1
dval←−−− u2 such

that u1 = (s, p1, d1, t1) and u2 = (s, p2, d2, t2) then v(d1) = v(d2). Further, if

u1
did←−− u2 then d1 = d2.

The following example further refines the fine-grained data depenencies shown
in Figure 1c in terms of the types of dependencies they represent.

Example 4. Consider again the dependencies shown in in Figure 1c. In the case
of normalize:1, the update of parameter y was derived from the x, a, and b

values giving:

(normalize:1, x, d2, 1)
dder←−−− (normalize:1, y, d5, 4),

(normalize:1, a, d3, 2)
dder←−−− (normalize:1, y, d5, 4), and

(normalize:1, b, d4, 3)
dder←−−− (normalize:1, y, d5, 4).

Similarly, for filter:1 while the value of y was copied directly from the x value,
it was not derived from (i.e., only depended on) the c value, thus:

(filter:1, x, d5, 1)
dval←−−− (filter:1, y, d7, 3), and

(filter:1, c, d6, 2)
ddep←−−− (filter:1, y, d7, 3).

3 Fine-Grained Data Dependency Rules

This section defines a set of high-level, declarative rules for specifying fine-
grained data dependency patterns. Rules are expressed over actor signatures,
and can be executed over traces to generate dependencies. We first describe the
rule language, then describe a relational implementation of the abstract model
in which Datalog queries are used to implement the patterns defined by the
high-level dependency rules. We then demonstrate the dependency rules using
commonly found types of dataflow actors.
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Table 1. High-level rule language for specifying fine-grained dependencies of actors.

Dependency Rule Rule Definition

y depends on x in a If u1 = (a:i, x, d1, t1), u2 = (a:i, y, d2, t2), and t1 <

t2, then assert u1
ddep←−− u2.

y derives from x in a If u1 = (a:i, x, d1, t1), u2 = (a:i, y, d2, t2), and t1 <

t2, then assert u1
dder←−− u2.

y derives from value x in a If u1 = (a:i, x, d1, t1), u2 = (a:i, y, d2, t2), t1 < t2,

and v(d1) = v(d2), then assert u2
dval←−− u1.

y derives from id x in a If u1 = (a:i, x, d1, t1), u2 = (a:i, y, d2, t2), t1 < t2,

and d1 = d2, then assert u2
did←−− u1.

y depends on prev x in a If u1 = (a:i, x, d1, t1), u2 = (a:i, y, d2, t2), t1 < t2,
and there does not exists a u3 = (a:i, x, d, t) such

that t1 < t < t2, then assert u2
did←−− u1.

y derives from prev x in a If u1 = (a:i, x, d1, t1), u2 = (a:i, y, d2, t2), t1 < t2,
and there does not exists a u3 = (a:i, x, d, t) such

that t1 < t < t2, then assert u2
dder←−− u1.

y derives from value prev x in a If u1 = (a:i, x, d1, t1), u2 = (a:i, y, d2, t2), t1 <
t2, v(d1) = v(d2), and there does not exists a
u3 = (a:i, x, d, t) such that t1 < t < t2, then assert

u2
dval←−− u1.

y derives from id prev x in a If u1 = (a:i, x, d1, t1), u2 = (a:i, y, d2, t2), t1 < t2,
d1 = d2, and there does not exists a u3 =
(a:i, x, d, t) such that t1 < t < t2, then assert

u2
dval←−− u1.

3.1 Dependency Rule Language

The dependency rule language is based on the eight high-level patterns described
in Table 1. Each dependency rule takes the form “s d t in a”, where s is a
source parameter, d is a dependency type, t is a target, and a is an actor.
Given a source y and target x for an actor a, a rule asserts dependencies from
updates of parameters a.y to updates of parameters a.x. We consider four ba-
sic types of dependencies, namely, depends on which establishes a basic depen-
dency, derives from which establishes a derivation, derives from value which
establishes a value-copy derivation, and derives from id which establishes an
identifier-copy derivation. We also consider two dependency qualifiers. The de-
fault qualifier all states that each update of a parameter a.y depended on every
previous update of a parameter a.x within an actor step. The first four depen-
dency rules shown in Table 1 (implicitly) use the all qualifier. Alternatively, the
prev qualifier states that only the most recent update of a.x is a dependency of
a.y for a particular step. The last two rules in Table 1 use the prev qualifier.
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3.2 Abstract Model and Dependency Rule Implementation

Here we briefly describe a relational implementation of the abstract model and
an approach for applying dependency rules. In general, dependency rules would
be provided as part of the actor definitions of a workflow or possibly specified and
refined by a workflow developer or end-user. As shown later in this section, each
actor may have multiple dependency rules, in which case each rule is applied (i.e.,
the union of the rules is taken, instead of their intersection). Dependency rules
are used to define a corresponding data-dependency view (or query) over a given
workflow trace, and thus dependencies are decoupled from, i.e., not specified as
part of, the trace itself.

Actor parameter specifications (signatures) are represented using the rela-
tion param(xa, xp, xt), which states that the parameter name xp is defined for
the actor xa and has the type xt ∈ {in, out, state}. Here we do not consider
channels since only actor signatures are required for workflow specifications in
the abstract model.

A workflow trace consists of parameter updates and value definitions. Param-
eter updates are represented using the relation update(xu, xa, xs, xp, xd, xk, xt),
where xu is a unique update identifier, xa is the actor and xs is the actor invoca-
tion id (together denoting the step), xp is the parameter being updated, xd is a
data item where xk is the item type such that xk ∈ {id, val}, and xt is the rel-
ative update order (with respect to the step). Data values are represented using
the relation value(xd, xv), where xd is the data identifier and xv is the value.
As an example, the updates for the filter actor in the trace of Figure 1b would
be represented as the following facts, assuming d5 and d7 are both represented
as the same value v.

update(7, filter, 1, x, v, val, 1),
update(8, filter, 1, c, d6, val, 2),
update(9, filter, 1, y, v, val, 3).

We consider four separate relations for representing dependencies:
ddep(u2, u1), dder(u2, u1), dval(u2, u1) and did(u2, u1), together with the fol-
lowing Datalog rules for capturing the subsumption hierarchy between the dif-
ferent dependency types.

ddep(u2, u1) :− dder(u2, u1).

dder(u2, u1) :− dval(u2, u1).

dval(u2, u1) :− did(u2, u1).

Each provenance rule is represented as a fact in the relation
prov rule(xa, xp2, xp1, xt), where xa denotes the actor, xp2 specifies the tar-
get parameter, xp1 specifies the source parameter, and xt is the type of the
dependency. Given a set of prov rule facts, the following Datalog rules define a
program for inferring all explicitly defined dependencies of a trace. Dependencies
are inferred for rules of the form “y depends on x in a” using the Datalog query:

ddep(u2, u1) :− prov rule(a, y, x, depends on), update(u1, a, s, x, d1, k1, t1),

update(u2, a, s, y, d2, k2, t2), t1 < t2.
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A similar query with depends on replaced by derives from and ddep replaced
by dder is used for the case of “y derives from x in a”. For rules of the form
“y derives from value x in a”, we have three separate cases depending on the
type of data item:

dval(u2, u1) :− prov rule(a, y, x, derives from value),

update(u1, a, s, x, v, val, t1), update(u2, a, s, y, v, val, t2), t1 < t2.

dval(u2, u1) :− prov rule(a, y, x, derives from value),

update(u1, a, s, x, d1, id, t1), update(u2, a, s, y, d2, id, t2),

value(d1, v), value(d2, v), t1 < t2.

dval(u2, u1) :− prov rule(a, y, x, derives from value),

update(u1, a, s, x, v, val, t1), update(u2, a, s, y, d, id, t2),

value(d, v), t1 < t2.

dval(u2, u1) :− prov rule(a, y, x, derives from value),

update(u1, a, s, x, d, val, t1), update(u2, a, s, y, v, id, t2),

value(d, v), t1 < t2.

For rules of the form “y derives from id x in a” we use the query:

did(u2, u1) :− prov rule(a, y, x, derives from id),

update(u1, a, s, x, d, id, t1), update(u2, a, s, y, d, id, t2), t1 < t2.

Finally, for rules of the form “y depends on prev x in a” we define the following
two queries:

ddep(u2, u1) :− prov rule(a, y, x, depends on prev),

update(u1, a, s, x, d1, k1, t1), update(u2, a, s, y, d2, k2, t2),

t1 < t2,¬after(u1, t2).

after(u, t) :− update(u, a, s, p, d, k, t1), update(u2, a, s, p, d2, k2, t2),

update(u3, a, s, p3, d3, k3, t), t1 < t2, t2 < t.

where after(u, t) states that an update occurred in the same step and on the
same parameter after u but before t. A similar query is used for rules of the
form “y derives from prev x in a”, again, where depends on is replaced by
derives from and ddep is replaced by dder.

3.3 Dependency Rules for Common Actor Invocation Patterns

Here we provide examples of different types of actor dependency patterns found
within scientific workflow systems (and in particular, those systems supporting
dataflow models of computation [8] such as Kepler [11] and Taverna [15], among
others). For each type of actor we give the corresponding rules for describing the
data dependencies generated by each actor invocation. Our goal is to highlight
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the benefits of our approach by showing that for these common types of patterns,
the high-level rules both capture the dependency patterns and are easier (more
concise) to specify than, e.g., the underlying queries implementing the rules.

Transform and Filter. The normalize actor in Figure 1 is an example of a
basic transformer. The following provenance rules capture the dependencies for
the normalize actor, in which each output y is derived from each corresponding
input parameter x, a, and b.

y derives from x in normalize,
y derives from a in normalize,
y derives from b in normalize.

Similarly the filter actor in Figure 1 is an example of a (low-pass) filter. The
provenance rules for filter are

y derives from value x in filter,
y depends on c in filter.

We note that the first rule could also be defined using derives from id if the
actor implementation copies the input identifier to the output parameter (as-
suming this is also supported by the underlying workflow system).

As a simple example of the relational implementation, the above inference
rules for the filter actor would result in the following two facts being asserted
within the prov rule relation.

prov rule(filter, y, x, derives from),
prov rule(filter, y, c, depends on).

Using the example updates of Figure 1b, the queries for dder and ddep given in
the previous subsection together with the above rules would infer the following
dependencies, where in update 7 parameter x was written to (as input to the
invocation), in update 8 parameter c was written to (as input to the invocation),
and in update 9 parameter y was written to (as output to the invocation such
that y receives the value given to x, implying the value satisfied the conditional
value in c).

dval(9, 7),
ddep(9, 8).

Delay. A typical delay actor consists of three parameters: an input x, a state
parameter s, and an output y. The state parameter is set to a default value
at the beginning of the initial invocation. At each invocation, the state value
is copied to the output y, and the input value in x is then copied to the state
parameter s. The current input is output on the next invocation (which, e.g.,
make approaches based on implicit dependency rules problematic). Delay actors
are often used to initiate a loop. The dependency rules for a typical delay actor
are as follows.
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y derives from value s in delay,
s derives from value x in delay.

A similar pattern is to perform a transformation of x at each step. In this case, the
second rule above would be changed from derives from value to derives from.

Sliding window. A sliding window performs an aggregate operation over an
overlapping, fixed size number of input elements. For each window, an output is
produced. For instance, consider the simple case of a sliding window actor swp

that performs a product over a window size of two (see Figure 2). This actor has
an input parameter x, a state parameter s, and an output parameter y. On each
invocation, s contains the last element of the previous window, x is updated to
the next value, y is then computed from x and s, and then s is updated to the
new value of x. The dependency rules for swp are the following.

y derives from x in swp,
y derives from s in swp,
s derives from x in swp.

Figure 2 shows an example trace and the dependencies inferred from the above
rules.

Monotonic integer stream merge. Often, two dataflow paths within a work-
flow must be merged, and various strategies have been developed for performing
merge operations (e.g., depending on whether order must be preserved, only
unique data items should be output, and so on). Here we consider a simple case
of an order-preserving merge operation, which takes two input data streams rep-
resented by parameters x and y, and produces one output stream represented
by parameter z. The data items arriving on each respective parameter x and y

are assumed to be ordered. On the first invocation of the actor, data items are
read into both x and y, with the smallest value being copied to output param-
eter z and the larger value copied to a state variable s. The actor also records
the input parameter having the smallest value. On subsequent invocations, the
parameter with the smallest previous value is read into, if this value is smaller
than the current state parameter value, its value is copied to z, otherwise the
state value is copied to z (and the next execution will read from the other input
parameter). Assuming that data identifiers are copied between parameters by
the merge actor, the dependency rules can be expressed as follows.

s derives from id x in merge,
s derives from id y in merge,
z derives from id x in merge,
z derives from id y in merge,
z derives from id s in merge,
z depends on x in merge,
z depends on y in merge,
z depends on s in merge.
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The depends on rules state that the particular output depended on each param-
eter update (but was derived via a copy from only one of the parameters). If only
data values are copied (as opposed to identifiers), the above rules can be modi-
fied to use derives from value, however, two parameters with the same value
will result in multiple derivations (i.e., either the initial x and y or subsequent
updates of s with x or y).

List transformer. A list transformer is an instance of a standard map opera-
tion. In particular, given a sequence of tokens on an input parameter x a list
transformer outputs corresponding values on an output parameter y. Consider
the simple case of an add1 actor, which adds one to each element of an input
list, and outputs a list with the modified values. Thus, on a single invocation,
add1 reads multiple values from x and produces multiple values on y. However,
each output value on y is dependent only on the most recently read data item
on x. Thus, the dependency rule for add1 is the following.

y derives from prev x in add1.

List sum. An invocation of the list sum actor computes the sum of a given list
of data items. The actor can be implemented with an input parameter x, state
parameter s, and output parameter y. At the start of an invocation, s is updated
with the default value 0. The actor then reads a value on x, adds it to s, and
stores the result back in s. When all values have been read, the latest value of s
is output on y. Thus, each s value is derived from the previous s value, and the
final output is a copy of the value on s. The dependency rules for list sum are
the following.

s derives from prev s in sum,
s derives from prev x in sum,
y derives from value prev s in sum.

List sum is an instance of a fold function, and the same rules can be used for
list sum implemented via scan, i.e., with intermediate state values also output
on y.

4 Related Work

While many workflow systems provide support for recording workflow trace in-
formation [6,7], systems that provide support for fine-grained data dependencies
employ either implicit rules (e.g., [2,9,15,10]) or rely on actors to declare depen-
dencies (e.g., [12]). Our approach allows for expressing explicit rules (high-level
view definitions) that are independent of the underlying workflow system and
layered over standard execution traces. In [13], explicit rules are also used for
efficiently tracking the provenance of stream-based continuous queries. Three
types of rules are defined: two for specifying sliding windows (via time intervals
and window element size), and another based on data selection queries (e.g.,
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Fig. 2. Example sliding window product actor swp (with window size 2): (a) two invo-
cations with data items di for i the update order, and (b) inferred dependencies.

to assert that certain outputs depend on all inputs having specific attribute
values). Our rules are more generic in that they do not rely on specific data
values and cover a larger class of components than those designed for sliding
window operators. Finally, fine-grained dependencies are automatically inferred
from workflows composed of white-box components in [3] (based on the Pig Latin
language). While we do not assume the presence of white-box actors, our rules
could be used within such an approach to support cases where white-box and
user-defined, black-box functions are used together.

5 Summary

This paper has presented an approach for addressing the problem of determin-
ing fine-grained data dependencies within scientific workflows by decoupling the
specification of dependencies from the “observables” recorded within workflow
execution traces. Our approach defines both an abstract model of observables
and a high-level declarative rule language for specifying detailed dependency pat-
terns. We also demonstrated how the abstract model and rule patterns can be
implemented within a relational framework and provided examples of common
dataflow actors expressed using our rule language. Inferring fine-grained depen-
dencies from workflow execution traces is complementary to existing provenance
standardization efforts such as OPM [16] and the W3C Prov model [1], which
serve as general-purpose representing schemes for provenance information. Our
basic model of provenance assumed and the dependencies generated from the
inference rules presented here are compatible with both the OPM and Prov
models. In this way, our framework could easily be used to produce detailed
provenance information from workflow traces that conforms to the OPM and
Prov representation schemes. Finally, both the model and the inference rule lan-
guage described here are currently being implemented as part of the provenance
framework supported by the RestFlow scientific workflow system [?].
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