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Abstract

We describe a framework called the Uni-Level Description (ULD) for accurately repre-
senting information from a broad range of data models. The ULD extends previous meta-
data-model approaches by: (a) providing uniform representation and access to data model,
schema, and data, and (b) supporting data models with non-traditional schema arrange-
ments, including those that allow optional and multiple levels of schema. Because the ULD
is a flat, first-order representation, we show how Datalog over the ULD can provide a flex-
ible mechanism to query, extract, and transform information from data sources that exhibit
various types of structural heterogeneity.
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1 Introduction

Data and knowledge management systems are typically based on a data model
or representation that sets the basic structures for organizing and storing data. A
number of data models are in common use and each data model provides slightly
different modeling structures. For instance, information is represented as tables in
the relational data model, as ordered trees in semi-structured data models such as
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XML, and as directed graphs in semantic networks such as RDF. One important ad-
vantage of having multiple data models is that developers can select the data model
that offers the most convenient representation for their particular needs, motivated
in part by their desire to use tools associated with the data model. However, the
use of multiple data models introduces the possibility of many kinds of structural
heterogeneity.

While data models can differ in their modeling constructs, they can also signifi-
cantly differ in the way schemas are used. A typical database data model requires
the use of a schema, e.g., to define the tables of interest in a relational database.
Then, quite naturally, all instance data in the database conforms to the schema.
The purpose of the schema in a database system is to establish the basic structure
for instance data (e.g., by describing the attributes present in a table) and establish
constraints (e.g., such as key, foreign key, and domain constraints) that the instance
data must satisfy.

However, newer data models and representation schemes, such as XML [1], RDF
[2], and Topic Maps [3] have a less strict notion of schema. First, the use of a
schema is optional; XML information need not have an XML schema or a DTD and
RDF data need not have an RDF Schema. Thus we might be confronted with data
that conforms to one (or more) schemas intermixed with data that is not associated
with a corresponding schema. Second, the details of the conformance relationship
may differ from one model to the next. In Topic Maps [3], one topic (“John Doe™)
may have another topic (“Employee”) as its type but the Employee topic does not
place any structural constraints on the “John Doe” topic. Third, some models, such
as RDF and Topic Maps, allow multiple levels of type or schema-instance links.
For example, the “Employee” topic might have a type of “Person” in addition to
“John Doe” having “Employee” as a type.

One particularly challenging form of structural heterogeneity, sometimes called
schematic heterogeneity [4—6], is when data of interest appears as instance data
in one information source and as part of the schema in another source. For exam-
ple, an Employee table in a relational database might have a state attribute as part of
an address with values such as “OR” or “CA,” whereas another information source
might have multiple employee tables named (simply) “Oregon” and “California”
and so on. The indication of the state for a given employee appears as data in one
case and as the table name (in the schema) in the other case; this makes it difficult to
access the state associated with an employee across these data sources in a uniform
manner. Note that the flexible use of schemas in newer data models, as described
above, admits several additional kinds of model-schema-instance heterogeneity.

In this work, we embrace the use of such a wide range of data models. And we
are interested in supporting data model interoperability, where a user can easily ac-
cess information from multiple sources, in spite of any structural heterogeneity that
might be present. This paper presents a generic representation language that can be



used to describe a broad range of data models, including models with flexibility in
the use of schema. Our representation language is called the Uni-Level Description
(ULD) because it represents the complete description of a data source, including
an explicit description of the data model, any schema(s) if present, and all instance
data, in a flat representation.

1.1 Introduction to the ULD

Consider a typical object-oriented model where the primary data model construct
is called class and each instance of a class is an object. Figure 1 shows an excerpt
from this model in the ULD on the left, and a traditional meta-data-model-based
description on the right [7—14]. In a traditional framework, the class is described as
a data model construct (as an instance of a construct in the meta-model), the actor
class would be part of the schema (as an instance of the class construct), and indi-
vidual objects, such as deNiro, comprise the data (as instances of the appropriate
schema construct). A data-model definition in the ULD, on the other hand, estab-
lishes the data structures that will be used to hold schema information (class) as
well as the data structures that will be used to hold data information (object). These
are, in turn, instantiated with schema (acror) and data (deNiro) instances.

The ULD offers a number of advantages over the traditional framework:

e Data constructs and their corresponding instances can exist independently from
any schema constructs or instances. That is, there is no requirement to have a
schema construct first. In contrast, in the traditional framework, data can only be
represented as an instance of an existing schema construct.

e Conformance relationships, where a particular data construct can or must con-
form to a particular schema construct, are modeled explicitly using the confor-
mance (or simply conf) predicate, as shown in the middle portion of the ULD
framework in Figure 1. The ULD allows the semantics of each conformance
relationship to be specified separately and explicitly.

e At the instance level, data-instance-of relationships, where a particular data in-
stance conforms to a particular schema instance, are modeled explicitly using
the d-inst predicate, as shown in the bottom portion of the ULD framework in
Figure 1. The d-inst predicate represents the traditional notion of schema-data
instantiation. Explicitly specifying d-inst relationships supports the use of op-
tional schemas; one data instance might be a d-inst of a schema object whereas
another data instance might not be.

e Multiple levels of conformance and multiple levels of data-instance-of relation-
ships can be represented directly using multiple conf and d-inst links, respec-
tively.

e The construct type (i.e., data structure) used to represent schema constructs (such
as a class) and the construct type (data structure) used to represent data constructs
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Fig. 1. The ULD Framework (left) and a traditional meta-data-model framework (right).
Each distinct shape denotes a different data structure.

(such as an object) can be different in the ULD. In contrast, in traditional frame-
works the construct type of the data (implicitly) must follow the structure of the
schema, further limiting the types of data models that can be captured.

1.2 The ULD as a Flat Representation

Although we typically draw a ULD configuration (e.g., a ULD representation of a
particular data source) using the three levels shown in Figure 1, these configurations
are “flat” in the ULD. That is, the construct types, the schema constructs, the data
constructs, the schema objects, and the data objects are all part of a single first-order
interpretation of a generic ULD theory, using the predicates shown as labels on the
arrows in Figure 1. Data model constructs are introduced using the ct-inst relation-
ships (i.e., construct-type-instance-of). Schema and data constructs introduced in
a particular data model are instantiated using c-inst relationships (i.e., construct-
instance-of ). The d-inst relationship indicates that a data instance (e.g, the deNiro
object) conforms to a schema instance (e.g., the actor class).

The following facts are contained in the flat, ULD representation of the example
shown in Figure 1.

ct-inst(class, struct-ct)
ct-inst(object, struct-ct)
conf(object, class, 0:n, 1:1)
c-inst(deNiro, object)
d-inst(deNiro, actor)

The identifiers class, object, actor, and deNiro are defined and related using the



generic ULD predicates ct-inst, conf, c-inst, and d-inst. The conf predicate states that
a given object must be an instance of one class (via the 1:1 conformance constraint)
and a class can have zero or more objects as instances (via the O:n conformance
constraint). As we discuss further in Section 2, additional ULD predicates are used
to define the structures of these identifiers (e.g., that a class is composed of a set
of attribute definitions, and so on). We treat the facts given above as the low-level
ULD language, and introduce syntactic conventions in Section 2 for defining ULD
configurations.

The ULD approach differs from data models that overload the instance-of or type
relationship such as RDF, Telos [15], or other semantic-network-based data mod-
els. The flat representation in the ULD enables an ordinary query language to easily
access the data model, schema(s), and instance data, in contrast to most formaliza-
tions of database and other schema-based data models which treat schema as an in-
terpretation of the data model and data instances as an interpretation of the schema.
Thus for the data shown in Figure 1, data model (class and object), schema (actor),
and data (the deNiro object) are equally accessible and can be directly queried via
the ULD predicates. We use Datalog rules as a query language for the ULD and we
have investigated using Datalog to perform a wide variety of model-based trans-
formations [16—19]. The rules are particularly powerful because model-to-model
transformations as well as various kinds of transformations handling structural het-
erogeneity can be expressed directly.

One would expect that implementing data management functions directly using
the ULD would be inefficient because conformance relationships would need to
be interpreted and enforced. We do not necessarily advocate a direct ULD imple-
mentation. Rather, we are exploring the use of the ULD as a supplemental view
mechanism to support data-model interoperability where generic, ULD-based tools
can easily select and traverse information of interest, across a wide spectrum of
information sources. We are interested in light-weight, ad-hoc uses of informa-
tion, e.g., much like a web browser allows the user to browse through HTML. The
ULD provides a simple mechanism to expose structural information (when needed)
across diverse data models and schemas.

1.3 Organization of the Paper

In Section 2, we describe in detail the ULD and the constraints inherent in ULD
theories, also called ULD configurations. We show examples of relational, XML,
and RDF and RDF Schema (hereafter, simply denoted RDF) data sources expressed
as ULD configurations. In Section 3, we show how Datalog can be used to access
information at various levels within ULD configurations. In this way, we can select
information from multiple sources using a single, ULD-based query language. In
Section 4, we use Datalog with the ULD to provide a powerful transformation lan-



Movie

mid : integer title : string genre : string | company : string
1 The usual suspects Thriller Gramercy

2 Meet the parents Comedy Universal

Cast

mid : integer | character : string | actor : string

1 Roger Verbal Kint Kevin Spacey

2 Jack Byrnes Robert de Niro

Fig. 2. An example relational schema and instance

<!ELEMENT moviedb (movie¥*)s>

<!ELEMENT movie (title, studio, genre*, review*)s>

<!ELEMENT title (#PCDATA) >

<!ELEMENT studio (#PCDATA) > XML

<!ELEMENT genre (#PCDATA) > DTD

< !ELEMENT review (#PCDATA) >

<!ATTLIST review rating #CDATA REQUIRED
source #CDATA REQUIRED>

<moviedb>
<movies>
<title>The Usual Suspects</title>

<studio>Gramercy</studio> XML
<genre>Thriller</genre> Instance
<review rating="8.7"” source="IMDB”/> Document
</movie>
</moviedb>

Fig. 3. An example XML DTD (top) and instance document (bottom)

guage that can easily accommodate various kinds of structural heterogeneity across
data sources. In Section 5, we compare the ULD to other meta-data-model ap-
proaches and languages for resolving heterogeneity. Finally, in Section 6 we sum-
marize our contributions and describe future work.

2 The Uni-Level Description

We first introduce three example data sources. Figures 2, 3, and 4 show similar
schema and instance data represented in the relational, XML, and RDF data models.
The examples not only use different data models, but they also exhibit schematic
heterogeneity (e.g., with “Thriller” as data in the relational database but as a class
in RDF), and data differences (with “Spacey, Kevin” in RDF and “Kevin Spacey”
in XML). We note that for the RDF example, not all instance data in the source has
a corresponding schema definition.

As previously mentioned, an information source is represented in the ULD as a con-
figuration consisting of data model, schema, and instance representations. This sec-
tion describes a high-level ULD syntax for defining configurations, demonstrates
the language using the above example data sources, and shows how configurations
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Fig. 4. An example RDF schema (top) and instance (bottom)
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can be modeled as ULD first-order logic theories.
2.1 The ULD Representation Language

The ULD representation language is a high-level syntax for defining ULD config-
urations. Informally, a ULD configuration consists of a set of identifiers represent-
ing construct types, (schema and data) constructs, and (schema and data) construct
instances related through ct-inst, conf, c-inst, and d-inst predicates. In addition, con-
structs and construct instances each have a corresponding structural value. In the
case of constructs this value is a structure definition (such as a record or set type)
and in the case of construct instances this value is an instantiated structure def-
inition (a value of the corresponding type). Construct types define the allowable
structural definitions. Here, we consider the struct-ct (i.e., for record-like struc-
tures), set-ct (for collections), union-ct (for union types), and atomic-ct (for basic
types like string and integer) construct types. >

The ULD high-level syntax enables more concise descriptions of ULD configura-
tions, compared to using the low-level ULD predicates. Figures 5, 6, and 7 use the
ULD high-level syntax to describe (simple) versions of the relational, XML, and
RDF data-model constructs, respectively. Constructs beginning with “uld” are pre-
defined types, e.g., uld-string represents a default string atomic type. We also use

3 In[17], we include bag and list collection types in addition to the set type described here.



uld-value and uld-valuetype as special constructs to denote the set of basic values
(of any type) and value types (both default such as uld-string but also configuration-
defined, such as pcdata), respectively. We discuss the use of these constraints in
more detail below (see also Figure 8). Note that there are potentially many ways
to describe a data model in the ULD, and these examples show only one choice of
representation (e.g., see [17] for more detailed ULD descriptions of these and other
data models.)

A construct definition in the high-level syntax can take one of the following forms.
e construct ¢ := [a1=>c1, ax=>ca, ..., ay=>cy] :: co cardinality [xz:vq, x,:y]

This expression defines a construct ¢ as a ct-inst of construct type struct-ct, where
a to a, are distinct labels, n > 1, and ¢ to ¢, are construct identifiers. Each ex-
pression a; => c¢; is the component of the construct ¢ where a; is the component
selector. The symbol “::” here denotes a conformance definition, which is an
optional part of the expression. When a conformance definition is present, con-
struct instances of ¢ must conform (i.e., be connected by a d-inst relationship) to
construct instances of ¢ according to the domain (x;:y,) and range (x,:y,) car-
dinality constraints. If the conformance expression is not present, conformance
is not permitted for the construct, i.e., there cannot be a d-inst relationship for
the construct’s instances. The cardinality constraints on conformance restrict the
participation of associated instances in d-inst relationships, for both the domain
and range of the relationship, to either: exactly-one, denoted 1:1; zero-or-one,
denoted 0:1; zero-or-more, denoted 0:n; or one-or-more, denoted 1:n.

e construct ¢ : = set-of c; :: ¢g cardinality [xgz:y4, x-:yr]

This expression defines a collection construct ¢ as a ct-inst of construct type
set-ct. The definition restricts the values of instances of construct ¢ to have as
members only instances of the construct ¢. Each such member must have a
distinct identifier. This construct definition can also contain an optional confor-
mance definition with associated domain and range cardinality constraints. Note
that every component of an instance of a struct-ct and set-ct construct is either an
identifier or an atomic value. Thus, arbitrarily nested structures can be supported
by nesting identifiers whose values contain nested identifiers, and so on.

e constructc :=cy | ca|...|cn

This expression defines a union construct ¢ as a ct-inst of construct type union-ct,
where ¢ to ¢, are distinct construct identifiers for n > 2. The definition states
that each instance of ¢ to ¢, is also an instance of ¢. A union construct provides
a simple mechanism to group heterogeneous structures (e.g., atomic and record
types) as opposed to using a more formal is-a type of relationship (like in de-
scription logic), which requires strict inheritance semantics and only permits the



grouping of common structures (e.g., classes). Here we do not consider confor-
mance definitions for union types.

e construct ¢ := atomic :: ¢g cardinality [x;:y4, Xr:y,]

This expression defines an atomic construct ¢ as a ct-inst of construct type atomic-
ct. Examples of atomic constructs include PCDATA and CDATA for XML and
the data type literal for RDF. This construct can also contain a conformance
definition.

For our definition of the relational data model shown in Figure 5, tables and re-
lation types are one-to-one: each table conforms to exactly one relation type and
vice versa. Similarly, each tuple in a table must conform, as shown by the range
restriction of 1:1, to a relation type, and values of the tuple to attributes of a relation
type. We assume each relation type can have at most one primary key. Note that
we do not define, other than cardinality restrictions, the various constraints implicit
in the data model definition. Data model constraints can be given using the ULD
constraint language, described elsewhere [17].

We briefly illustrate here, however, how comformance relationships can be fur-
ther specified using first-order logic constraints (in particular full and embedded
dependencies [20], a fragment of the ULD constraint language). The following
constraints apply to the relational model of Figure 5, and are expressed over the un-
derlying ULD predicates. Note that the member-of and struct-of predicates (defined
below in Section 2.2.1) provide access to set and record (struct) instance values,
respectively. The first constraint requires every tuple in a table to conform to the
table’s corresponding relation.

(Vx,y,u) c-inst(x,table) A member-of(y,x) A d-inst(x,u) — d-inst(y,u)

The next constraint requires every tuple-value in a table to conform to an attribute
of the table’s corresponding relation.

(Vy,z,u,v,w) c-inst(y, tuple) A member-of(z,y) A d-inst(z, w) A d-inst(y,u) A
struct-of (u, atts, v) — member-of(z,v)

The next constraint requires every attribute in a relation to have a conforming tuple-
value in a corresponding tuple.

(Vx,y,z,u,v,w) c-inst(x, table) A d-inst(x,u) A struct-of (u, atts, v) A
member-of(w,v) A member-of(y,x) — (3z) member-of(z,y) A d-inst(z, w)

The last constraint restricts tuples to at most one tuple-value for every attribute.

(Vy,z1,22,w) c-inst(y, tuple) A member-of(z;,y) A member-of(zz,y) A
d-inst(zy,w) Ad-inst(z2,w) — z1 = 22



% schema constructs

construct relation := [name=>uld-string, atts=>att-set]

construct att-set : = set-of attribute

construct attribute : = [name=>uld-string, domain=>uld-value-type]
construct pkey : = [for-rel=>relation, key-atts=>pkey-att-set]

construct fkey [for-rel=>relation, to-rel=>relation, fkey-atts=>fkey-att-set]
construct pkey-att-set : = set-of attribute

construct fkey-att-set := set-of attribute

% data constructs

construct table : = set-of tuple :: relation cardinality [1:1, 1:1]

construct tuple : = set-of tuple-value :: relation cardinality [0:n, 1:1]
construct tuple-value := [value=>uld-value] :: attribute cardinality [0:n,1:1]

Fig. 5. A simple relational data model representation in the ULD

% schema constructs

construct pcdata := atomic

construct cdata := atomic

construct elem-type  := [name=>uld-string, atts=>att-def-set, model=>content-def]
construct att-def-set ;= set-of att-def

construct att-def := [name=>uld-string]

construct content-def := set-of content-type
construct content-type : = elem-type | uld-value-type
% data constructs

construct element : = [tag=>uld-string, atts=>att-set, children=>content] ::
elem-type cardinality [0:n,0:1]
construct att-set : = set-of attribute
construct attribute := [name=>uld-string, value=>cdata] :: att-def cardinality [0:n,0:1]
construct content : = set-of node
construct node := element | pcdata

Fig. 6. A simple XML (with DTD) data model representation in the ULD

The XML data model shown in Figure 6 includes constructs for element types,
attribute types, elements, attributes, content models, and content, where element
types contain attribute types and content specifications, elements can optionally
conform to element types, and attributes can optionally conform to attribute types.
We simplify content models to sets of element types for which a conforming ele-
ment must have at least one subelement for each corresponding type. Although not
shown here, the XML description can be extended (e.g., see [17]) to include richer
content models including the various DTD regular-expression constraints.

Figure 7 shows a version of the RDF data model expressed in the ULD with con-
structs for classes, properties, resources, and triples. A triple in RDF contains a
subject, predicate, and object, where a predicate can be an arbitrary resource, in-
cluding a defined property. In RDF, the properties rdf:type, rdfs:subClassOf, and
rdfs:subPropertyOf are considered special and are used to denote instance and spe-
cialization relationships. In the description of Figure 7, however, we model rdf:type

10



% schema constructs

construct resource := class | property | uri-ref

construct class : = [uri-val=>uld-uri, label=>uld-string] ::
class cardinality [0:n,0:n]

construct property : = [uri-val=>uld-uri, label=>uld-string, domain=>class,
range=>range-value]

construct uri-ref : = [uri-val=>uld-uri] :: class cardinality [0:n,0:n]

construct range-value := resource | uld-value-type

construct sub-class : = [sub=>class, super=>class]

construct sub-property := [sub =>property, super =>property]
% data constructs

construct triple := [pred=>resource, subj=>resource, obj=>obj-value]
construct obj-value := resource | literal
construct literal := atomic

Fig. 7. A simple RDF data model representation in the ULD

using conformance and introduce the constructs sub-class and sub-property to
model rdfs:subClassOf and rdfs:subPropertyOf, respectively. For example, a sub-
class relationship is represented by instantiating (using c-inst) a sub-class construct
as opposed to using the special rdfs:subClassOf RDF property. This approach al-
lows RDF properties and structural relationships to be decoupled in the ULD rep-
resentation and does not limit the expressiveness of RDF in that partial, optional,
and multiple levels of schema are still possible.

Every ULD configuration can be initialized with default constructs that represent
typical primitive value types, such as string, Boolean, integer, URI, and so on, as in-
stances of atomic-ct. In addition, uld-value and uld-value-type are special constructs
that work together to provide a mechanism for describing data models that permit
user-defined primitive types (e.g., to support relational domains or XML Schema
data type definitions). Figure 8 shows how these constructs are defined within the
ULD framework. The uld-value construct is defined as a union-ct construct, repre-
senting the union of all defined atomic-ct constructs. Thus, when a new atomic-ct
construct is created, it is added to the definition of uld-value.* In addition, every
atomic-ct construct is assumed to conform to the uld-value-type construct. Instances
of the uld-value-type construct serve as placeholders for atomic-ct constructs at the
instance level. Each atomic-ct construct has a uld-value-type instance whose value
is the name of the corresponding atomic-ct construct (see Figure 8). For exam-
ple, if a new atomic-ct date type is created, the system assigns the construct as
a union member of uld-value and creates a new uld-value-type instance with the
value ‘date’. Individual dates (shown at the bottom right corner of Figure 8) are
construct-instances of (as indicated by the c-inst relationship) the date construct in
the middle of Figure 8 as well as of uld-value (by virtue of the fact that value is a

4 We assume that the construct is added by the system managing the ULD configuration,
and not by the user.

11
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Fig. 8. The default uld-value and uld-value-type constructs for representing scalar types
where date is a member of the union defining uld-value (i.e., date is a sub-construct of
uld-union)

union construct). The system assigns each date value to be a d-inst of the ‘date’ uld-
value-type instance. Thus, e.g., using these constructs, we can define a conformance
constraint for the relational data model requiring that each tuple-value’s component
for the selector value is a d-inst of its corresponding attribute’s component for the
selector domain.

Sample schema and data (the bottom level in Figure 5) for the relational, XML, and
RDF data models are shown in Figures 9, 10, and 11, respectively. Expressions for
defining construct instances take one of the following forms, for instance identifiers
d, dj to d,,, and construct identifier ¢

e instance d :=c:lai:dy, ..., a;:di] 2 [dj, ..., dy]
e instance d :=c:{dy,....d;} :: [dj, ..., dy]
e instanced :=cw:[di, ..., d,]

These expressions define d as a c-inst of construct c. In the first case, the instance
d is assigned the given record (struct) value. In the second case, d is assigned the
given set value. And in the last expression, d is assigned the atomic value v. (Note
that v here is optional, and if it is missing, we assume the identifier itself is the
desired atomic value.) If ¢ participates in a union construct ¢y, d is also assigned as
a c-inst of both ¢ and cg. The symbol “::” here is used to denote d-inst relationships,
and is optional. When the identifier participates in (one or more) d-inst relation-
ships, d is assigned as a d-inst of each construct instance d; to dy,, each of which
must be a c-inst of the construct that ¢ conforms to.

Figure 9 defines the movie table from Figure 2 using the ULD relational model
description of Figure 5. As shown, a movie is defined as a relation having four at-
tributes and a single primary key. To keep the description more concise, we use the
ULD versions of atomic types (i.e., uld-integer and uld-string), however, one could
easily define the desired domain types for the example. In Figure 9, we also create
a movie table as a d-inst of the movie relation. The d-inst relationship signifies that
the table conforms to (is an instance of) the movie relation schema. As described
earlier, a table must satisfy certain constraints to be considered a valid d-inst of a
relation, namely, that each tuple it contains conforms to the relation schema and

12



% schema instances

instance movie := relation:[name:‘movie’, atts:movie-atts]
instance movie-atts := att-set:{a1, a2, a3, a4}

instance a1 : = attribute:[name:'mid’, domain:‘uld-integer’]
instance a2 : = attribute:[name:title’, domain:‘uld-string’]
instance a3 : = attribute:[name:‘genre’, domain:‘uld-string’]
instance a4 : = attribute:[name:‘company’, domain:‘uld-string’]
instance movie-key := pkey:[for-rel:movie, key-atts:movie-keys]

instance movie-keys := pkey-att-set:{a1}
% data instances
instance movie-table : = table:{t1} :: [movie]

instance t1 := tuple:{v1, v2, v3, v4} :: [movie]

instance v1 : = tuple-value:[value:1] :: [a1]

instance v2 : = tuple-value:[value:'The Usual Suspects’] :: [a2]
instance v3 : = tuple-value:[value: Thriller’] :: [a3]

instance v4 : = tuple-value:[value:'Gramercy’] :: [a4]

Fig. 9. Sample relational schema and data

all primary and foreign key constraints are satisfied.> In Figure 9 we also insert a
tuple, corresponding to the first row of Figure 2, into the table where the tuple is
assigned as a d-inst of the movie relation.

Figure 10 defines the movie database XML DTD from Figure 3 using the ULD
data model description of Figure 6. As shown, moviedb, movie, title, studio, genre,
review, rating, and source are defined as element types, nested through content
models (content-defs). The title, studio, and genre element types have pcdata as
their content models. Figure 10 also defines the instance document shown at the
bottom of Figure 3. We define one instance each for the moviedb, movie, title,
studio, genre, and review element, which are properly nested using ULD structures.

Figure 11 defines a portion of the RDF schema and instance from Figure 4 using
the ULD data model description of Figure 7. The film, thriller, cast-member, and
actor classes are defined along with their associated properties and sub-class defi-
nitions. Also shown is part of the instance from the bottom of Figure 4, including
the resource without an associated class having the (undefined) stars and source
properties.

We have implemented the ULD high-level syntax shown here within Prolog using
straightforward operator declarations (with associated functions). Thus, the syntax
above (with only slight modifications, e.g., replacing “-” with “_”) is an abstract
and high-level language that can be used directly (within Prolog) to manipulate and
further process ULD expressions. We can also use Prolog directly to convert un-

> Note that the ULD is typically populated with data that exists “natively” (e.g., from a
DBMS for relational data) and thus is assumed to satisfy conformance constraints.

13



% schema instances
instance moviedb
instance moviedb-def
instance movie
instance movie-def
instance title

instance text-content
instance studio
instance genre

instance review
instance review-att-defs
instance rating

instance source

% data instances
instance elem1
instance elem1-children
instance elem2
instance elem2-children
instance elem3
instance elem3-children
instance elem4
instance elem4-children
instance elem5
instance elem5-children
instance elem6
instance elem6-atts
instance at

instance a2

: = elem-type:[name:'moviedb’, model:moviedb-def]
: = content-def:{movie }

: = elem-type:[name:'movie’, model:movie-def]

: = content-def:{title, studio, genre, review}

:= elem-type:[name:‘title’, model: text-content]

: = content-def:{‘pcdata’}

:= elem-type:[name:‘studio’, model:text-content]
: = elem-type:[name:‘genre’, model:text-content]
: = elem-type:[name:‘review’, atts:review-att-defs]
: = att-def-set: {rating, source}

: = att-def:[name:‘rating’]

: = att-def:[name:‘source’]

: = element:[tag:'moviedb’, children:elem1-children] :: [moviedb]
:= content:{elem2}

: = element:[tag:'movie’, children:elem2-children] :: [movie]
:= content:{elem3, elem4, elem5, elem6}

: = element:[tag:‘title’, children:elem3-children] :: [title]

:= content:{‘The Usual Suspects’}

: = element:[tag:‘studio’, children:elem4-children] :: [studio]
:= content:{‘Gramercy’}

:= element:[tag:‘genre’, children:elem5-children] :: [genre]
:= content:{‘Thriller'}

:= element:[tag:‘review’, atts:elem6-atts] :: [review]

:= att-set:{a1, a2}

: = attribute:[name:‘rating’, value:‘8.7’] :: [rating]

: = attribute:[name:‘source’, value:'IMDB’] :: [source]

Fig. 10. Sample XML (with DTD) data and schema

derlying data sources, represented in a relational, XML, or RDF data model, into
corresponding ULD configurations. In particular, we use the various SWI-Prolog
[21] modules for accessing these sources (within Prolog) and define rules that map
data sources into their corresponding ULD representation. Observe that for each
underlying data model, there is a single set of Prolog rules to execute the conver-
sion, i.e., the Prolog rules for a particular data model are written once, and can be
applied to all sources of that model. We describe additional approaches for query-
ing and transforming ULD configurations via Datalog in more detail in Sections 3
and 4.

2.2 The ULD as a First-Order Representation

A significant advantage of the ULD compared to other meta-data-model approaches
is that, similar to F-Logic [22], ULD expressions are “syntactic sugar” for first-
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% schema instances

instance film : = class:[uri-val:'#film’, label:‘film’]

instance thriller : = class:[uri-val:‘#thriller’, label:‘thriller’]

instance member  := class:[uri-val:‘#cast-member’, label:‘cast-member’]

instance actor := class:[uri-val:‘#actor’, label:‘actor’]

instance title = property:[uri-val:‘#title’, label:‘title’, domain:film, range:‘literal’]

instance involved  := property:[uri-val:‘#involved’, label:‘involved’, domain:film,
range:member]

instance name : = property:[uri-val:'#name’, label:'name’, domain:member,

range:‘literal’]
instance thriller-film := sub-class:[sub:thriller, super:film]
% data instances

instance f1 := uri-ref:[uri-val:'#f1’] :: [thriller]

instance ks : = uri-ref:[uri-val:'#ks’] :: [actor]

instance r1 := uri-ref:[uri-val:‘#r1’]

instance t1 : = triple:[pred:title, subj:f1, obj:'The Usual Suspects’]
instance t2 := triple:[pred:review, subj:f1, obj:r1]

instance t3 : = triple:[pred:involved, subj:f1, obj:ks]

instance t7 : = triple:[pred:name, subj:ks, obj:‘Spacey, Kevin’]
instance t8 : = triple:[pred:stars, subj:r1, obj:'4.5’]

instance t9 : = triple:[pred:source, subj:r1, obj:‘netflix’]
instance stars : = uri-ref:[uri-val:'#stars’]

instance source : = uri-ref:[uri-val:‘#source’]

Fig. 11. Sample RDF(S) data and schema

order representations. Here we describe the underlying first-order representation of
the ULD.

Note that there are two fundamental types of information given in ULD configu-
rations: the set of identifiers that denote construct types, constructs, and construct
instances, and the values associated with these identifiers. Thus, in the first-order
representation, we provide predicates for accessing the various instance-of relation-
ships between identifiers (i.e., ct-inst, c-inst, d-inst, and conf) as well as predicates
for accessing the structural values associated with identifiers (i.e., to access primi-
tive, struct, and set values).

In Section 2.2.1 we first define a formal and abstract data structure for representing
ULD configurations. This data structure uses a natural representation of the struc-
tured values of configuration identifiers. For example, we represent the value of an
n-place struct-ct construct as an n-tuple of ordered pairs (s;,c;), where s; is a selec-
tor and ¢; a construct identifier. Similarly, we represent set-ct construct instances
directly using sets. Then, in Section 2.2.2, we define a ULD theory consisting of
ULD predicate symbols. We also define a mapping that converts a given configura-
tion expressed in the abstract model to its corresponding interpretation of the ULD
theory. In Section 2.2.3, we further define the ULD theory by specifiying axioms
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that all such interpretations satisfy. These axioms can be used to reason over ULD
configurations, e.g., to infer certain additional c-inst relationships.

2.2.1 An Abstract Model of Configurations
The abstract model of a configuration ¥ is a tuple of the form
(Or,Oc, Op, V,val,ext,, ext.,exty,conf)

consisting of identifiers, values, identifer-to-value mappings, instance-of mappings,
and conformance relationships. We define each of these structures below.

Identifiers and Value Mappings. The sets Or, O¢, and Op consist, respectively,
of construct-type identifiers, construct identifiers, and construct-instance identi-
fiers. We require Or, Oc, and Op to be pairwise disjoint sets for a configuration
F . The set ¥ contains the structural values of . The function val: Oc U Op — V
maps each construct in O¢ and instance in Op to its value in V. The sets of identi-
fiers and values represent the domain of the configuration.

Instance/Extension Mappings. The functions ext.;, ext., and ext; represent the
three types of ULD instance-of relationships ct-inst, c-inst, and d-inst, respectively.
The function ext.; : Oy — 29¢ maps each construct-type identifier ¢t in F to its
“extent,” consisting of each construct identifier ¢ that is defined as a construct-type
instance of ¢t (where 2°¢ denotes the powerset of Oc). The function ext. : Oc — 29
maps each construct identifier ¢ in ¥ to each of its instance identifiers d that are
defined as a construct instance of ¢. And, the function ext; : Op — 29 maps each
instance identifier d in F to each of its instance identifiers d that are defined as data
instances of d. As shown below, these three functions trivially map to the ct-inst,
c-inst, and d-inst ULD first-order predicates.

Conformance. Conformance is represented using the relation
confC Oc x Oc x{0:1,1:1,0:n, I:n} x {0:1,1:1,0:n, L:n}

that contains only those elements (c1,c2,d,r) in which instances of ¢; are allowed
to be data instances of instances of ¢,, according to the domain d and range r con-
straints. Like with the instance-of relationships, the conformance relation trivially
maps to the conf predicate in the ULD first-order representation.
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Construct Values. The construct values of & consist of struct-ct, set-ct, and
union-ct construct definitions represented as follows.® We note that here we do
not consider bag and list structures, as in [17]. Every construct identifier ¢ €
extq (struct-ct) has a value of the form

val(c) = ((s1,¢1),(s2,¢2)5 -, (Snycn)) €V

such that each (s;,¢;) is an ordered pair with s; € 7 as the component selector and
¢i € Oc as the construct identifier of the i-th component of ¢ for 1 <i < n. Every
construct identifier ¢ € ext.,(set-ct) has a singleton value

val(c) =co € V

such that construct instances of ¢ are defined to only contain construct instances of
co € Cr. And, every construct identifier ¢ € ext,,(union-ct) has a set value of the
form

val(c) ={c1,c2,...,cn} €V

such that ¢ is defined as the union of construct identifiers ¢ to ¢, in Oc.

Instance Values. The instance values of F consist of record, set, and atomic
structures represented as follows. Every instance identifier d € ext.(c) where ¢ €
ext (struct-ct) has a value of the form

val(d) = ((s1,d1), (s2,d2),. .., (Spn,dy)) €V

such that each (s;,d;) is an ordered pair having s; as the component selector and
d; € Op as the instance identifier of the i-th component of d for 1 <i < n. (Note
that each s; for d must be in the corresponding value of c.) Every instance identifier
d € ext.(c) where ¢ € ext.(set-ct) has a set value of the form

val(d) = {d],dz, e ,dn} eV,

which denotes the (possibly empty) set value of d for d; € Op and 1 <i <n. And,
every instance identifier d € ext.(c) where ¢ € ext.(atomic-ct) has a value

val(d) =v eV,

capturing the singleton atomic value of d.

% The atomic-ct constructs in our framework do not have additional structure other than an
identifier, thus the value of an atomic construct such as pcdata is null.
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2.2.2  Mapping Configurations to First-Order Representations

Given a configuration ¥, we define an interpretation /¢ as a mapping from ¥ to
the ULD first-order representation. The domain of the interpretation /¢ is the set of
construct type, construct, and instance identifiers as well as the set of atomic and
structural values of F.

For interpretations we also assume the standard functions and relations for access-
ing structural values within a configuration. In particular, the expression v.s returns
the construct or construct-instance identifier given a (tuple) value v and a selector s
(where s is a selector for v), and “€” is the standard set membership relation. Given
these assumptions, for a configuration ¥, the interpretation I is defined as

I

ct-inst(x,y)! = x € ext(y)
c-inst(x,y)! = x € ext.(y)
d-inst(x,y)! = x € exty(y)

conf(x,y,d,r) = (x,y,d,r) € conf

struct-type-of (x,s,y)! = x € ext, (struct-ct) Aval(x).s =y

set-of(x,y)! = x € ext.(set-ct) Aval(x) =y

union-of(x,y)! = x € ext. (union-ct) Ay € val(x)

struct-of (x,s,y)! = Jc x € ext.(c) Ac € exty(struct-ct) Ay = val(x).s
)

member-of(x,y)" = Jcy € ext.(c) Ac € exty(set-ct) Ax € val(y)

Each expression above defines a mapping where the left-hand expression (the atom)
is true if and only if the right-hand expression is true. The ULD first-order repre-
sentation consists of exactly the predicates used in the left-hand expressions above.

2.2.3 ULD Axioms

We take advantage of the first-order ULD representation to capture implicit ULD
axioms. For example, the following two axioms are expressed in first-order logic
and constrain ULD struct-ct constructs and instances. The first axiom states that if
s 1s a selector for a struct-ct construct instance, then s must be defined in the corre-
sponding construct. The second states that every instance of a struct-ct construct ¢y
has a value for each selector defined by c.

(Vx,y,s,c1) struct-of (x, s,y) A c-inst(x,c;) — (Jcz) struct-type-of(cy, s, c2)
(Vx,s,c1,c2) struct-type-of(cy,s,c2) Ac-inst(x,c1) — (Jy) struct-of(x,s,y)
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As another example, the following axiom defines the required relationship between
set-ct constructs and their instances.

(Vx,y,c1,c2) member-of(x,y) Ac-inst(y,c1) A set-of(c1,c2) — c-inst(x,c2)
The next axiom gives the ULD constraint for union-ct construct instances.
(Vx,c1,c2) c-inst(x, c2) Aunion-of(cy,cp) — c-inst(x,cp)

Finally, the following two axioms restrict conformance: the first requires that the
corresponding constructs of data-instances related by the d-inst relationship have
conformance definitions, and the second requires that constructs conform to at most
one other construct.

(Vx,c1,c¢2) d-inst(x,y) Ac-inst(x,c1) Ac-inst(y,c2) — (3d,r) conf(cy,ca,d,r)
(Ver,¢2,¢3,d1,r1,da,12) conf(cy,ca,dy,r1) Aconf(ct,c3,d2,m2) — c2 =¢3

From these two axioms we can derive the following axiom, which can be used to
uniquely infer the construct of an instance participating in a d-inst relationship.

(Vx,c1,¢2) d-inst(x,y) Ac-inst(x,c1) Aconf(cy,ca,d,r) — c-inst(y, c2)

A number of additional axioms are given in [17]. These axioms define the various
constraints on valid ULD configurations, and in certain cases can be used to ensure
that query expressions and transformations result in well-formed configurations (as
shown in [17]).

In addition to supporting the high-level ULD syntax, the Prolog implementation de-
scribed previously also includes rules to convert a configuration into a correspond-
ing ULD first-order representation. This first-order representation is used directly
for querying and transforming configurations via Datalog rules, as described in the
following two sections.

3 Using Datalog as a ULD Query Langauge

The two primary motivations for a ULD query language are: (a) providing users
with the ability to easily discover and navigate information within unfamiliar data
sources, and (b) allowing multiple, structurally heterogeneous data sources to be
easily accessed and combined. In previous work [19] we defined a separate lan-
guage on top of the ULD for incrementally navigating and browsing data sources.
Here, we give examples of using Datalog directly as the ULD query language to
access and navigate data sources. An advantage of the ULD is that it provides a
uniform language to access various levels of data sources expressed in different
data models. For example, the ULD can support queries posed directly against the
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data model (e.g., to determine the constructs used), the schema, and instance data
of a source, along with queries that access two or more of these levels at once.

This section describes the use of Datalog as a ULD query language. We give a num-
ber of example ULD queries against the data sources of Figures 9, 10, and 11. We
also demonstrate how ULD queries can be used to access multiple data sources si-
multaneously. In this way, the ULD can provide integrated views over data sources
with distinct data models, without requiring a user to perform additional transfor-
mations, e.g., by converting each source to a common data model.

3.1 Datalog and the ULD

A ULD query is expressed as a Datalog [23,20] program, consisting of a set of
restricted horn-clause rules that can be executed against ULD configurations. For
example, the following query finds all available class names within a ULD con-
figuration that describes an RDF data source. We use upper-case terms to denote
variables and lower-case terms to denote constants.

classname(X) :- c-inst(C, class), struct-of(C, label, X)

Similarly, the following query returns the property names of all classes in an RDF
configuration.

propname(X, Y) :- c-inst(C, class), c-inst(P, property),
struct-of(P, domain, C), struct-of(C, label, X),
struct-of(P, label, Y)

Note that these two queries use only schema definitions within the data source
(i.e., classes and properties). The following query accesses both schema and data
information to return all title values in the configuration.

filmtitle(X) :- c-inst(P, property), struct-of(P, label, ‘itle’), c-inst(T, triple),
struct-of(T, pred, P), struct-of(T, obj, X)

It is also possible to query data instances without accessing schema definitions. For
example, the following query returns the URI of all RDF resources used as a prop-
erty in at least one triple. The returned resource may or may not be associated with
schema. For example, this query would return, in addition to the defined properties,
the ‘#stars’ and ‘#source’ properties of Figure 11.

dataprop(X) :- c-inst(T, triple), struct-of(T, pred, P), struct-of(P, uri-val, X)
Once the above query is executed, a user may wish to find additional information
about particular properties. For example, the following query returns all values of

the ‘#source’ property, where ‘#source’ was returned by the previous query. Note
that this is an example of navigation, in which the user has found an item of in-
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terest (here, the ‘#source’ property), and is now “traversing” the property, finding
additional information (e.g., the value ‘netflix’).

propval(X) :- c-inst(T, triple), struct-of(T, pred, P), struct-of(P, uri-val, ‘#source’),
struct-of(T, obj, X)

The following queries are similar to the previous examples, but are expressed
against an XML configuration. The first query finds the names of all available ele-
ment types in the source; the second finds, for each element-type name, its corre-
sponding attribute-definition names; the third finds the set of movie titles; the fourth
finds all available attribute names (a data-only query); and the last query finds the
set of attribute values for review ‘source’ attributes in the configuration.

elemtype(X) :- c-inst(E, elem-type), struct-of(E, name,X)

atttype(X,Y) :- c-inst(E, elem-type), struct-of(E, name, X), struct-of(E, atts, AS),
member-of(A, AS), struct-of(A, name, Y)

title(X) : - c-inst(E, elem-type), struct-of(E, name, ‘itle’), d-inst(T, E),
struct-of(T, children, C), member-of(X, C)

atts(X) :— c-inst(A, attribute), struct-of(A, name, X)

titleattval(X) :- c-inst(A, attribute), struct-of(A, name, ‘source’), struct-of(A, value, X)

The next three queries are similar to the first three above, but are expressed against
a relational database configuration.

relation(X) : - c-inst(R, relation), struct-of(R, name, X)

atttype(X,Y) :- c-inst(R, relation), struct-of(R, name, X), structof(R, atts, AS),
member-of(A, AS), struct-of(A, name, Y)

title(X) : - c-inst(A, attribute), struct-of(A, name, ‘itle’), d-inst(V, A),
struct-of(V, value, X)

Finally, queries can be posed against data-model constructs directly. The follow-
ing query returns all schema constructs within any given configuration. By schema
construct, we mean a construct that appears as the range of a conformance defini-
tion.

schemastruct(S) :- conf(C, S, D, R)

Simlarly, the following query returns all constructs that serve as struct-ct schema
constructs along with their component selectors.

schemastruct(S, P) :- ct-inst(S, struct-ct), conf(D, S, X, Y), struct-type-of(S, P, C)
It is also possible to access data values directly within a configuration, without
having prior knowledge of the data model used. As a simple example, the following

query returns all atomic values of struct-ct construct components that serve as data
for a corresponding schema item within a configuration.
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dataval(V) :- ct-inst(S, struct-ct), d-inst(D, S), struct-type-of(S, P, C),
ct-inst(C, atomic-ct), struct-of(D, P, V)

3.2 Accessing Multiple Data Sources

Using the ULD query language, it is possible to access multiple data sources at
once. For this purpose, we permit ULD query atoms to be prefixed with a data-
source identifier. Intuitively, prefixed atoms are true if and only if they are true in
the configuration specified by the prefix.

To illustrate, the following two queries combine the XML and RDF sources given
in Figures 10 and 11 into a single “view” that provides the name, genre, and review
information for all films in the two sources. The following rule represents the XML
mapping, where “xml” is used as the prefix identifier of the XML data source.

review(F, G, R, S) :- xml:d-inst(M, movie), xml:struct-of(M, children, C),
xml:member-of(T, C), xml:d-inst(T, title),
xml:struct-of(T, children, TC), xml:member-of(F, TC),
xml:member-of(GE, C), xml:d-inst(GE, genre),
xml:struct-of(GE, children, GC), xml:member-of(G, GC),
xml:member-of(RE, C), xml:d-inst(RE, review),
xml:struct-of(RE, atts, AS), xml:member-of(A1, AS),
xml:d-inst(A1, rating), xml:struct-of(A1, value, R),
xml:member-of(A2, AS), xml:d-inst(A2, source),
xml:struct-of(A2, value, S).

The following rule represents the RDF mapping, where “rdf” is used as the prefix
identifier of the RDF data source.

review(F, G, R, S) :- rdf:d-inst(M, G), rdf:c-inst(SC, sub-class),
struct-of(SC, sub, G), struct-of(SC, super, film),
rdf:c-inst(T1, triple), rdf:struct-of(T1, subj, M),
rdf:c-inst(T1, pred, title), rdf:c-inst(T1, obj, F),
rdf:c-inst(T2, triple), rdf:struct-of(T1, subj, M),
rdf:struct-of(T1, pred, review), rdf:struct-of(T1, obj, RO),
rdf:c-inst(T3, triple), rdf:struct-of(T3, subj, RO),
rdf:struct-of (T3, pred, stars), rdf:struct-of(T3, val, R),
rdf:c-inst(T4, triple), rdf:struct-of(T4, subj, RO),
rdf:struct-of(T4, pred, source), rdf:struct-of(T4, val, S)

Note that these queries are “global-as-view” definitions [24] over the two sources
that reconciles both their data-model and schematic heterogeneities (with respect
to the corresponding film information).
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4 The ULD Transformation Language

One of the main applications of meta-data-models is data-model transformation.
A number of approaches [9,10,25] attempt to automatically convert schemas in
one data model to equivalent schemas in another data model according to fixed
sets of model-to-model conversion rules. However, this approach (similar to the
problem of schema mapping) is only applicable for certain data models and under
restrictive assumptions. In practice, user-defined programs are typically used to
convert between data sources having distinct data models. One reason for the use
of these special-purpose programs is that data-model constructs are typically not
one-to-one. For example, there are various ways to transform an XML data source
into a relational data source, and each transformation can have benefit in different
situations [26].

The goal of the ULD transformation language is to provide a declarative and formal
language for specifying transformation rules across structurally heterogeneous data
sources. Such languages can help users to more easily define data-model transfor-
mations when compared with the current use of ad-hoc and special-purpose pro-
grams. As with the ULD query language, the ULD transformation language fa-
cilitates conversions at various levels across data sources. The rest of this section
describes the basic ULD transformation language, and demonstrates different types
of transformations.

4.1 ULD Logic-Based Transformation

The ULD transformation language is similar in spirit to the Well-founded Object
Language (WOL) [27]. Both are declarative, logic-based languages for expressing
mappings. WOL is specifically meant for a restricted object-oriented data model
and for expressing schema mappings. We extend this approach to express a wide
range of transformations, including schema mappings for schemas represented in
different data models and generic data-model transformations.

A ULD mapping rule is an extended Datalog rule expressed against source and
target configurations. For example, the following simple rule converts RDF classes
to relations in the relational data model.

rel:c-inst(C, relation) <= rdf:c-inst(C, class)

The rule is read “if C is a class identifier in the “rdf” configuration, then C is a
relation identifier in the “rel” configuration,” where “rdf” is the source configuration
identifier and “rel” the target configuration identifier. The mapping above states only
that RDF identifiers in a source configuration are mapped to relation identifiers
in a target configuration. Additional rules are needed to transform class names to
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relation names, class properties to relation attributes, and so on.

More formally, a transformation consists of one or more mapping rules and an op-
tional set of rules that define intensional predicates (used by the mapping rules). We
assume that a target configuration contains a description of its data model prior to
the execution of a transformation. Target configurations may also contain additional
schema and instance data.

ULD mapping rules extend Datalog by allowing Skolem functions as well as multi-
ple atoms in a rule head. Note that this treatment of rules is similar to second-order
tuple-generating dependencies used for a similar purpose in schema mappings [28],
as well the rule language used in WOL [27], among others [25,29,30]. ULD map-
ping rules take the general form

V(x) < 0(x)

where the head of the rule is a conjunction y(x) of one or more (prefixed) ULD
atoms expressed over a target configuration (for x a vector of terms, i.e., variables,
constants, or Skolem terms), and the body of the rule is a conjunction of zero or
more (prefixed) atoms @(x) expressed against a source configuration. We note that
¢ can also contain atoms expressed against a target configuration, intensional atoms
defined in the transformation, or equations assigning variables to Skolem terms.

When a mapping rule is executed, each resulting atom in the head of the rule is
added to (or asserted in) a target configuration. In other words, a mapping rule
specifies one or more updates to target configurations. The output of a transforma-
tion is the updated target configuration that results from computing the fixpoint of
the corresponding mapping and intensional rules.

In the previous example, a new relation is constructed in the target configuration for
every class in the source configuration. As another example, the following mapping
rule adds the name to every generated relation in the target configuration.

rel:struct-of(C, name, N), rel:c-inst(N, uld-string) < rdf:c-inst(C, class),
rdf:struct-of(C, label, N)

Each atom in the head of the rule is asserted in the target configuration such that
every variable is replaced with its corresponding variable assignment. (A new vari-
able assignment is obtained in each evaluation of the body of the rule.)

In certain cases, identifiers in the source configuration can conflict with identifiers
in the target configuration. The following rule uses a Skolem function to generate
non-conflicting identifiers in the target configuration.

rel:c-inst(R, relation) < rdf:c-inst(C, class), R = f(C)

For convenience, we provide a default Skolem function id for defining explicit map-
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pings between identifiers. The function id is special syntax that denotes a unique
variable-arity Skolem function that generates new identifiers using existing source-
configuration identifiers and optional labels (constants).

The following mapping uses id to define the explicit connection between source
and target variables. The rule generates a relation identifier and an attribute-set
identifier for each class identifier in the source.

rel:c-inst(R, relation), rel:struct-of(R, name, N), rel:struct-of(R, atts, A),

rel:c-inst(A, att-set) <= rdf:c-inst(C, class), rdf:struct-of(C, label, N),

R =id(C, rel), A = id(C, att)
In this example, given the same value for C (where “rel” is a constant), R = id(C, rel)
always unifies R with the same identifier. Similarly, A = id(C, att) always unifies
A with the same identifier, different from R (because of the different constant att
as opposed to rel). Other mapping rules can now obtain the relation (or attribute
set) identifier generated from the original class (or attribute set), as shown in the
following mapping rule, which converts properties to relation attributes.

rel:c-inst(T, attribute), rel:struct-of(T, name, N), rel:member-of(T, A) <=
rdf:c-inst(P, prop), rdf:struct-of(P, domain, C), rdf:struct-of(P, label,N),
A =1id(C, att), T = id(P).

In general, id takes the form V = id(Vy, V3, ..., V) for n > 1, where V| to V,, are
(ground) variables representing source-configuration identifiers or constants and V
is a variable bound with the created identifier. If V' is already bound, the equation
V =id(Vy,...,V,) evaluates to true if V can be unified with the value of the gener-
ated identifier, and false otherwise.

We permit other special-purpose functions in addition to id such as functions to
concatenate strings. User-defined functions are also permitted, which can also help
resolve specific differences in data values. For example, a user-defined function can
be used to convert full names in last-name-first format to full names in first-name-
first format. As in Datalog, we require function parameters to be ground when a
function is called, i.e., every parameter is either a constant or a variable unified
with a constant through a variable binding [23].

4.2 General Data-Model Transformations

A generic data-model transformation converts any configuration of a particular data
model into a corresponding configuration within a different data model. The follow-
ing examples demonstrate part of a standard XML to relational transformation. In
this generic transformation, each XML element type is mapped to a relation, and
each element is mapped to a tuple with a unique identifier. The attribute set of the
corresponding element type’s relation also contain the attributes of the element type
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as well as an attribute named “content” for element types containing only pcdata.
For element types with complex content models, “edge” relations are created (i.e.,
representing an XML tree edge). This transformation is often referred to as the “at-
tribute” approach [26]. For a more detailed version of this transformation, see [17].
The result of the mapping for the data source of Figure 10 is shown in Figure 12.
Below we describe the part of the transformation that constructs the relations of
Figure 12.

The first mapping rule below converts every XML element type into a relational ta-
ble. Note that for simplicity we drop the prefixes in the following rules, but assume
that each formula in the body selects information from the XML source and each
formula in the head inserts information into the relational source.

c-inst(E, relation), struct-of(E, name, N), c-inst(N, uld-string) < c-inst(E, elem-type),
struct-of(E, name, N)

The following rule creates an attribute set for each corresponding relation of the
element type, and adds a new attribute to store the unique identifier of each corre-
sponding element.

c-inst(E, relation), c-inst(AS, att-set), c-inst(A, attribute), struct-of(A, name, ‘id’),
struct-of(A, domain, ‘uld-string’), member-of(A, AS) < c-inst(E, elem-type),
AS = id(E, atts), A = id(E, id)

The next rule creates a content attribute for element types having pcdata content
models.

c-inst(C, attribute), struct-of(C, name, ‘content’), struct-of(C, domain, ‘uld-string’),
member-of(C, AS) < c-inst(E, elem-type), struct-of(E, model, M),
member-of(pcdata, M), AS = id(E, atts), C = id(E, content)

The following rule creates a relational attribute for each element-type attribute.

c-inst(A, attribute), struct-of(A, name, T), struct-of(A, domain, ‘uld-string’),
member-of(A, AS) < c-inst(E, elem-type), struct-of(E, atts, AD),
member-of(A, AD), struct-of(A, name, T), AS = id(E, atts)

Finally, the next rule creates an edge relation (i.e., storing the edges from an XML
document tree; see [26]) from each complex content model. We use the concat
function to combine the two names of the element types for the generated relation.

c-inst(R, relation), struct-of(R, name, N3), c-inst(A1, attribute), c-inst(A2, attribute),
struct-of(A1, domain, ‘uld-string’), struct-of(A2, domain, ‘uld-string’),
struct-of(A1, name, E1), struct-of(A2, name, E2), member-of(A1, AS),
member-of(A2, AS) < c-inst(E1, elem-type), struct-of(E1,model, M),
member-of(E2, M), struct-of(E1, name, N1), struct-of(E2, name, N2),
N3 = concat(N1, N2), R = id(E1, E2, rel), AS = id(E1, E2, atts),
A1 =id(E1, E2, att1), A2 = id(E1, E2, att2)
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The data-level, element-to-tuple mappings can similarly be defined as ULD trans-
formation rules. In addition to this mapping, other standard XML to relational map-
pings can be constructed using the ULD transformation language.

4.3  Specialized Transformations

In addition to generic data-model transformations, it is also possible to define more
specialized mappings using the ULD. An example is a schema-to-schema map-
ping, where instances of a particular schema in one data model are converted to
corresponding instances of a schema in another model.

The following transformation rule is a simple schema-to-schema mapping, in which
instances of the DTD of Figure 10 are converted to instance data of the RDF data
source of Figure 11.

c-inst(M, uri-ref), struct-of(M, uri-val, U), d-inst(M, comedy), c-inst(T, triple),
struct-of(T, subj, M), struct-of(T, pred, title), struct-of(T, obj, V) <
d-inst(M, movie), struct-of(M, children, MC), member-of(G, MC),
d-inst(G, genre), struct-of(G, children, GC), member-of(‘comedy’, GC),
member-of(E, MC), d-inst(E, title), struct-of(E, children, EC),
member-of(V, EC), U = id(M, uri), T = id(M, E)

This mapping converts each movie element whose genre is “‘comedy” to a corre-
sponding comedy instance in the RDF source. Note that in this example, the map-
ping is not strictly schema-to-schema: we promote the genre value in the source to
schema in the target. This flexibility of the ULD allows for a wide range of spe-
cialized transformations, which can map between various data-model, schema, and
instance levels in both source and target configurations.

As another example of a specialized transformation, the ULD can also be used
to capture “model-to-data” conversions. The purpose of a model-to-data mapping
is to specify a serialization (or encoding) of one data model using another data
model. For example, the RDF data model defines a standard XML serialization
in which any RDF source (both schema and data) can be represented as an XML
document. An advantage of using the ULD transformation language for model-to-
data mappings is that it provides a formal, explicit, and executable definition of the
desired serialization.

5 Related Work

There has been a great deal of work over the past few decades on the problem
of information integration, particularly in a database context. Most approaches for
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moviedb movie title studio

id id id content id content
idl id2 id3 ‘The Usual Suspects’ id4 ‘Gramercy
genre review

id content id rating source
id5 “Thriller’ id6 ‘8.7 ‘IMDB’
moviedbmovie movietitle moviestudio moviegenre movier eview
moviedb | movie movie | title movie | title movie | title movie | review
idl id2 id2 id3 id2 id4 id2 id5 id2 id6

Fig. 12. The result of applying the attribute transformation

integration focus on resolving differences in schema as opposed to differences in
data models. Schema transformation approaches (e.g., [29,27,30]) convert valid in-
stance data under one schema to valid instance data under another schema, where
the source and target schemas are assumed to be heterogeneous. These approaches
typically define a special-purpose, query-based transformation language to express
schema mappings that, when executed, perform the desired instance-data conver-
sion. In addition, a number of approaches attempt to determine schema mappings
[31] automatically (or semi-automatically) by finding matching names and struc-
tures within the schemas. Schema matching is a central component of so-called
model management [12,32,33] where schema mappings can be used to solve sev-
eral metadata management problems.

Approaches for schema transformation and integration typically assume all
schemas are represented in a single data model. When multiple data models are
present, a common approach is to convert all data to a single data model. In gen-
eral, developers use ad hoc, special-purpose programs for resolving structural het-
erogeneity [12]. Writing programs to convert information between data models is
often a time-consuming and error-prone task that leads to complex programs that
are difficult to maintain and reuse.

In this section, we first discuss related meta-data-model architectures and, second,
we present several models with associated query languages that share some of the
goals of the ULD.

5.1 Meta-Data-Model-Based Architectures

A self-describing data model [7] adds limited meta-data-model capabilities to an
existing data model in which the meta-data-model and the data model are the same.
That is, the same storage structures are used for explicitly representing schema as
for representing data. For example, a self-describing representation of the relational
data model would encode a relational schema—the set of relation names, their at-
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tributes, foreign and primary keys, and domains—using a fixed set of relations,
called a catalog schema. The catalog instance can then be queried, e.g., to find the
attributes of a relation. This approach has been adopted and is supported by most
database management systems.

Meta-data-model architectures (see Figure 1) are often more general than self-
describing data models in that they are designed to enable interoperability across
heterogeneous data models. These approaches describe each heterogeneous source
using the same meta-data-model, which provides a common representation for ac-
cessing schemas via the meta-schema structures. A number of approaches use E-R
(entity and relationship) structures to define meta-schemas and their corresponding
schemas [9,10,8,13]. In this case, meta-schema constructs are defined as patterns,
or compositions of entity and relationship types. These patterns are then used to
define entities and relationships representing corresponding schema items. Using
this approach, a meta-schema for an object-oriented data model would contain a
class construct represented as an entity type (called class) with a name attribute and
relationships to other constructs (e.g., that represent class attributes). A particular
object-oriented schema is then represented as a set of entities and relationships that
instantiate these meta-schema types. We note that in most meta-data-model archi-
tectures (with YAT [11] being an exception), data (e.g., the bottom level on the
right side of Figure 1) is stored in the database system, and is not represented in the
architecture explicitly.

An important assumption made by existing meta-data-model approaches is that
data, the bottom level on the right side of Figure 1, must adhere to the schema,
the third level down on the right side of Figure 1. That is, all data is considered
to be an instance of existing schema definitions. This assumption stems from tra-
ditional database systems, which generally require complete schema in which all
data must satisfy all of the constraints imposed by a schema. Optional- and partial-
schema data models cannot be represented with the assumptions underlying such
a traditional architecture. There is no way to instantiate meta-schema constructs to
create data without first creating a schema construct; the meta-schema only defines
structures for representing schema.

In the remainder of this section, we consider several specific meta-data-model-
based systems.

Atzeni and Torlone’s MDM [9,10] uses primitives similar to E-R entity and re-
lationship types and data-model constructs are defined as compositions of these
structures. Schemas in MDM are instantiations of these data-model structures and
MDM does not consider source data.

In YAT [11], a meta-data-model is used to define XML tree patterns, which are

DTDs that permit variables. A tree pattern describes a meta-schema, a partially
instantiated tree pattern denotes a schema, and a fully instantiated tree pattern rep-
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resents the content of an information source. YAT’s meta-data-model has limited
structuring capabilities for representing data-model constructs and schemas, and
instead, defines simple conventions to represent source data as hierarchies. YAT
uses a declarative, Horn-clause language to define schema mappings for data con-
version.

Barsalou and Gangopadhyay use metatypes [8], similar to MDM primitive struc-
tures, to define data models. A data model is represented as a collection of spe-
cialized metatypes, each serving as a specific data-model construct. A schema in-
stantiates the associated data-model metatypes, and a database is assumed to con-
tain instances of the corresponding schema types. Metatypes are formalized as a
second-order structure.

The Meta-Object Facility (MOF) [13] is a meta-data-model architecture proposed
by the Object Management Group. The MOF contains a complex and large number
of primitive structures (inspired by the UML meta-model) for defining data models.
The main focus of the MOF is to enable information models, such as UML class
diagrams, to be shared between applications.

Although in general it is possible to represent a data model and its associated
schema(s) and data in other data models or representation schemes, the ULD is the
only representation scheme that we are aware of that explicitly describes, retains,
and exploits the description of heterogeneous data models and can also accommo-
date flexibility in the use of schemas.

5.2 Related Data Models and Query Languages

The use of a flat model for the ULD, with support for optional and multiple levels
of schema, was inspired by RDF as evidenced by an earlier version of the ULD [16]
with only two structural primitives, named construct and connector, much like the
RDF resource and property, respectively. The version of the ULD presented here
extends our earlier ULD model by providing explicit constructs for records (structs)
and collections (sets) and by allowing arbitrarily nested structures. These additional
structural constructs permit a natural and direct description of a wider range of data
models than the earlier, simpler version of the ULD. These additional structures
also helped to solve performance problems associated with the earlier version of
the ULD caused by the number of join operations required to reconstruct, e.g., a
record and its constituent attributes.

There have been several RDF query languages proposed, including RQL [34],
RDQL [35], and SPARQL [36], the most recent. These query languages differ in
purpose, syntax, and expressive power as described in a recent survey paper [37].
But all of these languages, naturally, provide explicit mechanisms to match and
extract information from RDF data sources. Because RDF is a flat representation,
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where triples that describe the schema can be intermixed with triples that describe
instance data along with an explicit triple to connect the two, an RDF query lan-
guage can solve the problem of schematic heterogeneity by providing direct access
to schema and instance data in a single query. However, information in other data
models must first be transformed or encoded in RDF before any of the RDF query
languages can be used and RDF lacks specific constructs for describing other data
model constructs.

F-Logic [22] also shares some of the same goals as the ULD in that F-Logic seeks
to query both the schema and the data, in a single, first-order, logic-based language.
F-Logic was designed to formalize object-oriented models. The approach used in
F-Logic to solve the problem of schematic heterogeneity is to include data instances
(i.e., objects) at the leaf level in the class hierarchy that represents the schema. F-
Logic is limited to describing data models where the schema must be described
before any data can be entered.

IQL [38] is a functional query language that provides very rich structuring capabil-
ity, with arbitrary nesting of structures. The structuring capability of IQL is similar
to the structuring capability of the ULD except that nested structures in IQL are
directly nested whereas in the ULD each component of a record or element of a
set construct can hold the id of another structure as opposed to the actual, nested
structure.

In general, the ULD is the only meta-data-model approach we know of that ex-
plicitly models conformance (through the conf and d-inst predicates). We believe
this is due, in part, to the assumption that schema is required in most of the related
approaches. In addition, in most approaches, transformation is defined at the data
model or schema level (but not both).

6 Concluding Remarks

This paper describes the Uni-Level Description (ULD): a high-level and declarative
meta-data-model language for representing heterogeneous data sources. A ULD
representation of a data source includes an explicit description of the source’s data-
model constructs, schema information, and instance data. The ULD is a flat repre-
sentation that provides uniform access to all levels of a data source, facilitating the
management of structural heterogeneity. The ULD is also a structural model in that
it provides a structural type system (consisting of record, collection, and primitive
types) for defining data-model constructs, schemas, and instance data. The struc-
tural values associated with constructs, schemas, and instance data are represented
in the ULD using a small set of first-order formulas, which can be directly queried
and transformed using Datalog.
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Using the ULD, data-model constructs are explicitly described and instantiated to
represent the schema and instance information of a source. The ULD offers a novel
approach that permits both schema constructs and data constructs of a model to be
described. The ULD also permits special relationships for defining the conformance
between schema and data constructs. This approach can be used to describe a wider
range of data models (including RDF, Topic Maps, and XML) and can more accu-
rately capture the often subtle and complex schema and data relationships within a
model.

We describe both a Datalog-based ULD query and transformation language, and
demonstrate their use through a number of examples. The query language can be
used against a single ULD configuration (i.e., data source described in the ULD)
or multiple configurations for defining integrated views over sources. The transfor-
mation language can be used to define a wide range of conversions between data
sources, including model-to-model, schema-to-schema, model-to-schema, and nu-
merous variants.

In this paper, we also compare the ULD to other meta-data-model approaches and
briefly describe our ongoing Prolog-based implementation. As future work, we in-
tend to use the rich descriptions provided by the ULD to help verify and validate
transformation rules and further develop generic, data-model independent opera-
tors, i.e., operations that can be generically applied across a variety of data models,
such as those for enabling incremental navigation and browsing.
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