
Lecture 8:

• Quiz 2

• Derivations (cont)

• Onto Parsing

Announcements:

• HW-1 out (due Mon)

CPSC 326 (Spring 2024) S. Bowers 1 of 6

Check In: How can we represent S → aa∗ using recursion?

S → a | aS

• sometimes denoted as S → a+

Check In: Define a grammar for strings aibjci where i > 0, j ≥ 0, and i is even.

S → aaTcc | aaScc

T → bT | ϵ ... or T → b∗

Types of Derivations:

• Left-most: replace left-most non-terminal at each step

• Right-most: replace right-most non-terminal at each step

• Neither left- nor right-most: doesn’t follow either pattern

Note: Can help to rewrite Kleene star and alternation when learning derivations

Check In: Give a left-most derivation of abcd starting from S using grammar:

S → aT U d

T → bT | ϵ

U → U c | c

S ⇒ aT U d ⇒ a bT U d ⇒ a bU d ⇒ a b c d

CPSC 326 (Spring 2024) S. Bowers 2 of 6

Parsing: An example grammar

Simple list of assignment statements

<stmt_list> ::= <stmt> | <stmt> ';' <stmt_list>

<stmt> ::= <var> '=' <expr>

<var> ::= 'A' | 'B' | 'C'

<expr> ::= <var> | <var> '+' <var> | <var> '-' <var>

– Note: many possible grammars for this language!

Recall: using grammars to generate strings (derivations)

1. choose a rule (e.g., with start symbol on left-hand side)

2. replace with right-hand side (of rule)

3. pick a non-terminal N and rule with N on left side

4. replace N with rule’s right-hand side

5. repeat from 3 until only terminals remain

Whereas → (or ::=) denotes a rule, ⇒ denotes a derivation

CPSC 326 (Spring 2024) S. Bowers 3 of 6

Example derivation of “A = B + C; B = A”

<stmt_list> ⇒ <stmt> ; <stmt_list>

⇒ <var> = expr ; <stmt_list>

⇒ A = expr ; <stmt_list>

⇒ A = <var> + <var> ; <stmt>

⇒ A = B + <var> ; <stmt_list>

⇒ A = B + C ; <stmt_list>

⇒ A = B + C ; <stmt>

⇒ A = B + C ; <var> = <expr>

⇒ A = B + C ; B = <expr>

⇒ A = B + C ; B = <var>

⇒ A = B + C ; B = C

• This is a “left-most” derivation

– derived the string by replacing left-most non-terminals

• The opposite is a “right-most” derivation

<stmt_list> ⇒ <stmt> ; <stmt_list>
⇒ <stmt> ; <stmt>
⇒ <stmt> ; <var> = <expr>
⇒ <stmt> ; <var> = <var>
⇒ <stmt> ; <var> = B
⇒ . . .

• Can also have derivations that are neither left-most nor right-most

CPSC 326 (Spring 2024) S. Bowers 4 of 6

Derivations can also be written as “parse trees”

• Using the previous example derivation of “A = B + C; B = A”

stmt_list

stmt ; stmt_list

var = expr stmt

A var + var

B C

var = expr

B var

A

CPSC 326 (Spring 2024) S. Bowers 5 of 6

Summary – Things to Know

1. Derivations

2. Types of derivations (left-most, right-most, neither)

3. Be able to give a different type of derivation given a grammar and string to
derive.

4. Understand the different notation for grammars (::= and <>) and the simple
language.

5. Parse (syntax) trees and their relationships to derivations.

6. Be able to generate a parse tree from a grammar and string.

CPSC 326 (Spring 2024) S. Bowers 6 of 6

