
Lecture 7:

• Formal Grammars (cont)

Announcements:

• HW-1 out

• Quiz 2 Friday – Lexical analysis, grammars

CPSC 326 (Spring 2024) S. Bowers 1 of 7

Using Parentheses: Can use parentheses to simplify rules

S → (ab)∗ | (ba)∗

Check In: What is the language of this grammar rule?

Check In: How can the above be rewritten so it doesn’t use parantheses?

S → T ∗ | U ∗

T → ab

U → ba

Note: alternation has lower precedence than other “operators”

• The rule: S → a b∗ c | d∗ e

• Is the same as: S → (ab∗c) | (d∗e)

Check In: What is the language of this grammar rule?

S → (a | b)∗ | (d | e)∗

The language consists of the empty string, all combinations of a and b, and all
combinations of d and e

CPSC 326 (Spring 2024) S. Bowers 2 of 7

Recursion

Either directly when used in same rule, or indirectly ...

Direct Example: S → aS b | ϵ ... S occurs (directly) in S rule

• S yields the strings ai bi for i ≥ 0

• note this is not possible to express using ∗ (Kleene star)

• however, ∗ can be implemented using recursion (w/ the empty string ...)

Indirect Example:

S → T | ϵ

T → aS b

Derivations: can help decipher language of grammars, especially with recursion

• A derivation starts with a single non-terminal (e.g., S)

• Repeatedly replaces one non-terminal until only terminals remain

• Each “step” in the replacement is denoted by ⇒

Example using the Indirect recursive grammar above:

S ⇒ T ⇒ aS b ⇒ aT b ⇒ aaS bb ⇒ aabb

CPSC 326 (Spring 2024) S. Bowers 3 of 7

Check In: Give a derivation of abcd starting from S using grammar:

S → aT U d

T → bT | ϵ

U → U c | c

S ⇒ aT U d ⇒ a bT U d ⇒ a bU d ⇒ a b c d

CPSC 326 (Spring 2024) S. Bowers 4 of 7

MyPL Literals

We can use grammar rules to define a PL’s literal values

Note that we use BNF below ...

• where ::= used instead of →

• and non-terminals as <name>

BOOL_VAL ::= ‘true’ | ‘false’

INT_VAL ::= <pdigit> <digit>∗ | ‘0’

DOUBLE_VAL ::= INT_VAL ‘.’ <digit> <digit>∗

STRING_VAL ::= ‘"’ <character>∗ ‘"’

ID ::= <letter> (<letter> | <digit> | ‘_’)∗

<letter> ::= ‘a’ | ... | ‘z’ | ‘A’ | ... | ‘Z’

<pdigit> ::= ‘1’ | ... | ‘9’

<digit> ::= ’0’ | <pdigit>

... where <character> is any symbol (letter, number, etc.) except ‘"’

CPSC 326 (Spring 2024) S. Bowers 5 of 7

Terminology and Next Steps

A regular language is one that can be defined only using:

• concatenation, alternation, and Kleene star (plus simple rules S → a)

• but no recursion (except for Kleene star)

A context free language is one that can be defined using:

• any of the constructs (including recursion)

• but cannot have terminals on the left-hand-side of rules

A context sensitive language allows terminals on the left-hand side of rules

• e.g., aA → a bB substrings aA replaced by abB

• this rule is matched only when a string has an a before A

• the initial a serves as context for when to apply the rule

PL syntax is defined using context-free grammars

• but typically not enough to prohibit all invalid programs

• which is a reason for semantic analysis

• we will talk later about additional issues in grammars (e.g., ambiguity)

Some example syntax rules: ... use EBNF or variants

• For Java: https://docs.oracle.com/javase/specs/jls/se7/html/jls-18.html

• For Python: https://docs.python.org/3/reference/grammar.html

• Summary of C++: https://alx71hub.github.io/hcb/

CPSC 326 (Spring 2024) S. Bowers 6 of 7

Summary – Things to Know

1. Basic rules, concatenation, alternation, kleene star

2. How to rewrite a rule to remove alternation

3. How recursion (direct, indirect) generally works with grammar rules

4. How to rewrite Kleene Star using recursion

5. Basic idea of a derivation, how to do basic derivations

CPSC 326 (Spring 2024) S. Bowers 7 of 7

