
Lecture 6:

• Intro to Grammars

Announcements:

• HW-1 out

CPSC 326 (Spring 2024) S. Bowers 1 of 11



Formal Grammars

A set of (declarative) rules that define a language’s syntax (grammar)

• a “language” here broadly means a set of allowable strings {s1, s2, . . .}

• for this class, the set of allowable programs in a programming language

In PL implementation, grammars can be used within

• Lexers (lexical analysis) e.g., check numbers, strings, comments

• Parsers (syntax analysis) check if syntax is correct

Different “classes” of grammars

• “regular” grammars specify regular languages (think regular expressions)

• “context free” grammars specify context-free languages (most PLs)

• ... and so on

• we’ll just cover the basics of regular and context-free grammars

Aside: Grammars are closely tied to computation ...

• If view language of a grammar as output of a program (e.g., binary numbers)

• A grammar exactly “computes” the output

• Here, computing is performed by applying grammar rules to derive outputs

• We’ll see examples of derivations later

CPSC 326 (Spring 2024) S. Bowers 2 of 11



Grammar Rules

Grammar rules define productions (aka rewritings)

S → a

Here we say S produces (or yields) a

• S is a non-terminal symbol (LHS of a rule) ... sometimes as <s>

• a is a terminal symbol ... a part of a string

• terminal and non-terminal symbols are disjoint

• set of terminals is the alphabet of the language

• often a distinguished start symbol

Rules can be applied to create a derivation of a string

• from start, repeatedly apply rules until only terminals remain

• we’ll see examples soon

CPSC 326 (Spring 2024) S. Bowers 3 of 11



Concatenation

S → ab

This says S yields the string consisting of a followed by b

There can be many ways to define the same language

T → UV

U → a

V → b

Here T yields the same exact language as S (i.e., {ab})

Alternation

S → a | b

This says S yields the string a or b

The | symbol is special (meta) syntax for separate S-rules:

S → a

S → b

This says S yields the string a or S yields the string b

CPSC 326 (Spring 2024) S. Bowers 4 of 11



The empty string

S → a | ϵ

Where ϵ denotes the special “empty” terminal

This example says S yields either the string a or "" (empty string)

Check In: How can this rule be rewritten to not contain alternation?

Kleene Star (Closure)

S → a∗

This says S yields the strings with zero or more a’s

Namely, the strings: "", a, aa, aaa, . . ., and in general an for n ≥ 0

Combining Kleene star and concatenation:

S → a∗b∗

This says S yields strings with zero or more a’s followed by zero or more b’s

This is the strings: "", a, b, aa, ab, bb, and in general anbm for n,m ≥ 0

Check In: What is the language defined by the following rule?

S → a∗ | b∗

CPSC 326 (Spring 2024) S. Bowers 5 of 11



Summary – Things to Know

1. Basic grammar rules and terminology (terminals, non-terminals, etc.)

2. Concatenation, Alternation, Empty String, and Kleene Star

CPSC 326 (Spring 2024) S. Bowers 6 of 11


