
Lecture 4:

• Compilation and Interpretation (cont)

• Lexical Analysis

Announcements:

• HW-1 out

• Quiz 1 on Friday: MyPL (e.g., write code), Compilation/Interpretation steps

CPSC 326 (Spring 2024) S. Bowers 1 of 7

PL Implementation Basics: Interpretation

. . .

Lexical
Analysis

Syntax
Analysis

Semantic
Analysis

Interpreter
(program)

Source
Program

Token
Stream

Abstract
Syntax Tree

Abstract
Syntax TreeInput

Output
Back End

Front End

Abstract Syntax Tree (AST) Interpreters

• execute the program directly from the AST

Bytecode Interpreters (aka VMs) ... what we’ll do

• intermediate representation is bytecode

• interpreter runs bytecode directly ... “write once run anywhere”

Just-in-time Compiler (JIT)

• instead of interpreting bytecode, generates and runs machine code

• monitor running code (e.g., frequent “hot spots”) and optimize accordingly

CPSC 326 (Spring 2024) S. Bowers 2 of 7

Additional Notes on Approaches

Transpilers:

• Convert from one language into another

• Often include same “front-end” compilation steps (e.g., to an AST)

Transpiler vs Compiler:

• Compilers typically go from high-level to low-level languages

• Transpilers typically go from high-level to high-level languages

Compiler vs JIT:

• JIT sometimes called a “hybrid” approach (between compiled and interpreted)

• Popular implementation approach today

Other places where similar approaches used:

• Read-Eval-Print-Loops (REPLs)

• Integrated Development Environments (IDEs)

• Domain-Specific Languages (DSLs)

• “Data” Languages (e.g., HTML, JSON, XML, SQL, Graph QLs)

CPSC 326 (Spring 2024) S. Bowers 3 of 7

Lexical Analysis – Tokens

Tokens are the smallest meaningful units of a program

Some examples:

• Special words (“reserved” words)

int, if, while, new, class, public, and so on

• Operators and Punctuation

+, =, ==, <=, (, ;, ., and so on

• Identifiers

variable names, function names, class names, etc.

• Constant (i.e., “ literal”) values

42, 3.14, true, "abc", and so on

• Others (e.g., comments, annotations)

White space (usually) not tokens

• some exceptions such as Python

Tokens include a type and a lexeme (a value)

• the lexeme is just the token’s value in the source file

• e.g., in the statement: x = 42;

– the token types might be ID, ASSIGN, INT_VAL, SEMICOLON

– and the corresponding lexemes “x”, “=”, “42”, and “;”

• for some tokens, the lexemes are needed for program execution

– e.g., the variable name of the identifier (“x”) and the int value “42”

CPSC 326 (Spring 2024) S. Bowers 4 of 7

Lexical Analysis – Basics

Goal: simplify syntax analysis (parsing) and detect (token) errors early

• a “lexer” only deals with building tokens, not checking how they “go together”

• allows parser to focus on checking syntax rules (separation of concerns)

The basic idea:

Source Code: Token Sequence as TYPE(lexeme):
------------ --
int f() INT_TYPE("int"), ID("f"), LPAREN("("), RPAREN(")"),
{ LBRACE("{"),
int x = 0; INT_TYPE("var"), ID("x"), ASSIGN("="), INT_VAL("0"), SEMICOLON(";"),
return x; RETURN("return"), ID("x"), SEMICOLON(";"),

} RBRACE("}")

How it works:

• Source code converted to a sequence (or a stream) of tokens

• Skip over non-tokens (white space, comments)

• Keep line and column numbers as part of tokens

Note:

• a sequence is similar to a list

• a stream is similar to an iterator

CPSC 326 (Spring 2024) S. Bowers 5 of 7

Check in: Give the token sequence (token type, lexeme, line, column) for the
following MyPL code snippets. Assume the token types:

ASSIGN, ID, INT_VAL, LPAREN, RPAREN, LBRACE, RBRACE,
LESS_EQ, PLUS, STRING_VAL, WHILE, EOS

Snippet 1:
print("Hello World!")

Snippet 2:
int x = 0;
while (x <= 10) {
x = x + 2;

}

CPSC 326 (Spring 2024) S. Bowers 6 of 7

Summary – Things to Know

1. Difference between compilation and interpretation (steps)

4. The basic idea of a bytecode intrepreter

5. What is meant by a transpiler

6. Whether a given language’s primary implementation is an interpreter or a com-
piler (e.g., C/C++, Python, Java, ASM)

7. What a token represents and its basic components

8. Given a code snippet, the corresponding token stream

CPSC 326 (Spring 2024) S. Bowers 7 of 7

