
Lecture 32:

• Haskell intro (as time)

Announcements:

• HW-6 out

• Quiz 8 on Fri: Turing Machines, λ-calculus

CPSC 326 (Spring 2024) S. Bowers 1 of 3



On to Haskell ...

Some of the major features of Haskell

1. A purely functional language

• Only “pure” functions

– In general, functions do not have side effects (do not modify state)

– some nice features: e.g., memoization

• Values (variables) are immutable

• Functions (and operations) always produce entirely new values

• Very different than most other PLs

2. Static typing

• All type checking done at compile time (statically)

• Employs type inference ... unobtrusive—w/out type annotations

3. “Strong” typing

• Guarantees a program cannot contain certain type errors

• Haskell places limits on type conversion (implict/explicit)

CPSC 326 (Spring 2024) S. Bowers 2 of 3



4. Functions are “first-class” objects ... used like any other kind of value

• Can take functions as parameters (and call them in the function body)

• Can create new functions during program execution

• Can store functions in data structures

• Can return functions as values of other functions

5. Lazy evaluation ... vs eager evaluation

• Defer computation until the result is needed

• One benefit: possible performance gain (no needless computations)

– e.g., using quicksort, can ask for first (first two, etc.) values, without
sorting entire list

• Another benefit: “infinite” data structures

– and in particular, the ability to compute with them

– somewhat similar to iterators (or streams)

• Another benefit: programmer-defined control structures

– e.g., short circuit evaluation of if-then-else

– this means you don’t need special constructs for control flow

6. Expression-oriented

• All statements return values (e.g., even if statements!)

CPSC 326 (Spring 2024) S. Bowers 3 of 3


