Lecture 31:

e )-calculus cont

Announcements:

e HW-6 out

CPSC 326 (Spring 2024) S. Bowers 1of 4




The Lambda ()\) Calculus

From A-calculus to functional programming

e TMs are (roughly) the computation model behind imperative languages

e )\-calculus is (roughly) the computation model behind functional languages

Basic idea of A-calculus
1. Unnamed, single-variable functions (A “functions” aka “abstractions”)

e \z.x takes an x and returns an z
e \x.(\y.z) takes x and returns a function that takes y and returns z

e shorthand for multi-argument functions: Axy.x
2. Function application

e (Az.z)0 applies the identity function to 0 (resulting in 0)
o (Az.(A\y.x))ab reduces to a . (A\z.(A\y.z))ab= (A\y.a)b=a

3. Expressions

e Either a function, an application, a variable, or a constant
e A function has the form: Axz.e where x is a name and e an expression

e An application has the form: ejes where both €e's are expressions

Computation in A-calculus is via function application

e Given a function application such as:

(A\z.x)y

e An application is evaluated by substituting x's in the function body with y:

(Az.z)y = [y/x]z =y

CPSC 326 (Spring 2024) S. Bowers 20of 4



Representing the values “true” and "false” (here as substitutions):

T = Mx.(\y.x) (True)
F=X\x.(\y.y) (False)

We can use these to define basic logical operators (AND, OR, NOT):

AND = Az.(Ay.xzy(Au.(Av.v))) = Ax.(A\y.ay F)
OR = Az.(Ay.z(Au.(Av.w))y) = Ax.(Ay.xTy)
NOT = Ax.x(Au.(Av.v))(Ay.(Az.y)) = A\e.aF'T

Examples: ... note prefix notation, e.g., AND T' T

NOT T'= (A\z.xFT)T = TFT = (Az.(\y.2))FT = (\y.F)T = F
NOT F = (Az.aFT)F = FFT = (Az.(Ay.y))FT = (Ayy)T =T

AND T T = (Az.(\y.zyF)TT = (\y.TyF)T = TTF = (Az.(\y.z))TF
= (\W.T)F=T

AND T F = (Ax.(A\y.ayF))TF = (\y.TyF)F = TFF = (Ax.(Ay.x))FF
= \.F)F = F

ORF T = (Ax.(M\y.aTy))FT = (M\y.FTy)T = FTT = (Ax.(A\y.y))TT
= (A\yy)T =T

Note: Can use for conditionals (¢ e; e2) representing: IF ¢ THEN e; ELSE ey

CPSC 326 (Spring 2024) S. Bowers 3of 4



Can express recursion using A-calculus ... called a Y combinator”

R = M\y.(Azy(zx))(Az.y(zx)))
e The basic idea is that R calls a function y then “regenerates” itself

e For example, applying R to a function ¢ yields:

Ry = (Ay.(Az.y(xz))(Az.y(z2)))g (1)
= (Az.g(zx))(Az.g(zx)) (2)
= g((Az.g(zz))(Az.g(zz))) (3)
= g(Ry) (4)
= g(9(Ry)) (5)
= and so on (6)

e Note in (4) that g(R,) since R, = (Az.g(xx))(Ax.g(zx)) from (2)

e We can stop recursion using conditional functions (similar to Boolean ops)

As the examples show:
e ) calculus is inherently “higher order” — functions can be passed as arguments
e all functions can be thought of as having a single argument (called " currying")

e allows for “partial” function application ..eg: (M. Ay.+zy)) 34

Different paradigms, same power ...

A-calculus and Turing Machines have the same expressive power!

CPSC 326 (Spring 2024) S. Bowers 4 of 4



