Lecture 31:		
• λ -calculus cont		

Announcements:

• HW-6 out

The Lambda (λ) Calculus

From λ -calculus to functional programming

- TMs are (roughly) the computation model behind imperative languages
- \bullet λ -calculus is (roughly) the computation model behind functional languages

Basic idea of λ -calculus

- 1. Unnamed, single-variable functions (λ "functions" aka "abstractions")
 - $\lambda x.x$ takes an x and returns an x
 - $\lambda x.(\lambda y.x)$ takes x and returns a function that takes y and returns x
 - shorthand for multi-argument functions: $\lambda xy.x$
- 2. Function application
 - $(\lambda x.x)0$ applies the identity function to 0 (resulting in 0)
 - $(\lambda x.(\lambda y.x))ab$ reduces to a ... $(\lambda x.(\lambda y.x))ab \Rightarrow (\lambda y.a)b \Rightarrow a$
- 3. Expressions
 - Either a function, an application, a variable, or a constant
 - ullet A function has the form: $\lambda x.e$ where x is a name and e an expression
 - ullet An application has the form: e_1e_2 where both e's are expressions

Computation in λ -calculus is via function application

• Given a function application such as:

$$(\lambda x.x)y$$

• An application is evaluated by substituting x's in the function body with y:

$$(\lambda x.x)y = [y/x]x = y$$

Representing the values "true" and "false" (here as substitutions):

$$T \equiv \lambda x.(\lambda y.x)$$
 (True)
 $F \equiv \lambda x.(\lambda y.y)$ (False)

We can use these to define basic logical operators (AND, OR, NOT):

$$\begin{aligned} \mathsf{AND} &\equiv \lambda x. (\lambda y. xy (\lambda u. (\lambda v. v))) \equiv \lambda x. (\lambda y. xy F) \\ \mathsf{OR} &\equiv \lambda x. (\lambda y. x (\lambda u. (\lambda v. u)) y) \equiv \lambda x. (\lambda y. xTy) \\ \mathsf{NOT} &\equiv \lambda x. x (\lambda u. (\lambda v. v)) (\lambda y. (\lambda z. y)) \equiv \lambda x. xFT \end{aligned}$$

Examples:

 \dots note prefix notation, e.g., AND $T\ T$

NOT
$$T \Rightarrow (\lambda x.xFT)T \Rightarrow TFT \Rightarrow (\lambda x.(\lambda y.x))FT \Rightarrow (\lambda y.F)T \Rightarrow F$$

NOT
$$F \Rightarrow (\lambda x.xFT)F \Rightarrow FFT \Rightarrow (\lambda x.(\lambda y.y))FT \Rightarrow (\lambda y.y)T \Rightarrow T$$

AND
$$T$$
 $T \Rightarrow (\lambda x.(\lambda y.xyF))TT \Rightarrow (\lambda y.TyF)T \Rightarrow TTF \Rightarrow (\lambda x.(\lambda y.x))TF$
 $\Rightarrow (\lambda y.T)F = T$

AND
$$T F \Rightarrow (\lambda x.(\lambda y.xyF))TF \Rightarrow (\lambda y.TyF)F \Rightarrow TFF \Rightarrow (\lambda x.(\lambda y.x))FF$$

 $\Rightarrow (\lambda y.F)F = F$

OR
$$F$$
 $T \Rightarrow (\lambda x.(\lambda y.xTy))FT \Rightarrow (\lambda y.FTy)T \Rightarrow FTT \Rightarrow (\lambda x.(\lambda y.y))TT$
 $\Rightarrow (\lambda y.y)T \Rightarrow T$

Note: Can use for conditionals $(c \ e_1 \ e_2)$ representing: **IF** c **THEN** e_1 **ELSE** e_2

$$R \equiv (\lambda y.(\lambda x.y(xx))(\lambda x.y(xx)))$$

- ullet The basic idea is that R calls a function y then "regenerates" itself
- \bullet For example, applying R to a function g yields:

$$R_g = (\lambda y.(\lambda x.y(xx))(\lambda x.y(xx)))g \tag{1}$$

$$= (\lambda x. g(xx))(\lambda x. g(xx)) \tag{2}$$

$$= g((\lambda x. g(xx))(\lambda x. g(xx))) \tag{3}$$

$$=g(R_q) \tag{4}$$

$$=g(g(R_g)) (5)$$

$$=$$
 and so on (6)

- Note in (4) that $g(R_g)$ since $R_g = (\lambda x. g(xx))(\lambda x. g(xx))$ from (2)
- We can stop recursion using conditional functions (similar to Boolean ops)

As the examples show:

- ullet λ calculus is inherently "higher order" functions can be passed as arguments
- all functions can be thought of as having a single argument (called "currying")
- ullet allows for "partial" function application ... e.g.: $(\lambda x.(\lambda y. + x\,y))\,3\,4$

Different paradigms, same power ...:

 λ -calculus and Turing Machines have the same expressive power!