
Lecture 30:

• Quiz 7

• More on PL paradigms

Announcements:

• HW-6 out

CPSC 326 (Spring 2024) S. Bowers 1 of 4



Exercise: Write a turing machine to flip a’s and b’s

Current State Current Symbol New Symbol New State Direction
s1 a b s1 Right
s1 b a s1 Right
s1 Blank Blank s2 Left

• s1 is the start state, s2 is halt state

Exercise: Write a turing machine to subtract 1 from a binary number ≥ 1

Basic Approach: Find first 1, flip to 0, then write 1’s until end

• the “alphabet” is {0, 1} (binary digits) as opposed to {a, b}

• s1 is the start state (go to end), s2 (find first 1), s3 (write 1’s), s4 (halt)

Current State Current Symbol New Symbol New State Direction
s1 0 0 s1 Right
s1 1 1 s1 Right
s1 Blank Blank s2 Left
s2 0 0 s2 Left
s2 1 0 s3 Right
s2 Blank Blank s4 Left
s3 0 1 s3 Right
s3 Blank Blank s4 Left

CPSC 326 (Spring 2024) S. Bowers 2 of 4



Programming Languages and “Turing Completeness”

A PL is “Turing Complete” if it can simulate any Turing Machine

• Every computable function can be computed by a TM (Church-Turing thesis)

• If a PL is turing complete, it can express all possible computations

Note: Can write a TM that can simulate (run) all other TMs (encoded on tape)

• such a TM is called “universal” (i.e., a machine that can run machines)

Examples of languages that are not Turing Complete:

• Markup languages: HTML, XML, JSON, YAML, ...

• Many “domain-specific” languages: (basic) SQL, regular expressions

Turing Completeness not necessarily tied to specific constructs

• imperative languages with conditional branching (if-goto, while loops) and
arbitrary mem access (# of variables)

• whereas functional and logic-based languages have other constructs such as
pattern matching and recursion (no goto, no loops)

“Languages” that are (accidentally) Turing Complete

• Musical Notation (requires human to be the memory/tape)

• Excel spreadsheets w/ formulas

• Pokemon Yellow (https://www.youtube.com/watch?v=p5T81yHkHtI)

• Magic The Gathering card game (human selects moves)

• PowerPoint animations (requires human to follow links)

CPSC 326 (Spring 2024) S. Bowers 3 of 4



The Lambda (λ) Calculus

From λ-calculus to functional programming

• TMs are (roughly) the computation model behind imperative languages

• λ-calculus is (roughly) the computation model behind functional languages

Basic idea of λ-calculus

1. Unnamed, single-variable functions (λ “functions” aka “abstractions”)

• λx.x takes an x and returns an x

• λx.(λy.x) takes x and returns a function that takes y and returns x

• shorthand for multi-argument functions: λxy.x

2. Function application

• (λx.x)0 applies the identity function to 0 (resulting in 0)

• (λx.(λy.x))ab reduces to a ... (λx.(λy.x))ab ⇒ (λy.a)b ⇒ a

3. Expressions

• Either a function, an application, a variable, or a constant

• A function has the form: λx.e where x is a name and e an expression

• An application has the form: e1e2 where both e’s are expressions

Computation in λ-calculus is via function application

• Given a function application such as:

(λx.x)y

• An application is evaluated by substituting x’s in the function body with y:

(λx.x)y = [y/x]x = y

CPSC 326 (Spring 2024) S. Bowers 4 of 4


