Today

- Quiz 11
- Logic Programming Basics

Assignments

- HW 11 out
- Extra credit 1 out (due by end of semester)
- Proj Presentations next Thurs
Logic Programming (Overview)

Basic idea: Formal logic as a language syntax and computation model

- to specify computation problems as a set of facts and logical rules
- e.g., propositional logic ... $p \land q \rightarrow r$
- or using predicate logic ... $p(x, y) \land q(x, z) \rightarrow r(x)$

Some features of logic programming

- Extremely simple syntax
- (More) Declarative (*what* not *how*)
- Computation via “rules” and “constraints” (tricky at first)
 - Tends to feel more like specifying a solution than computing one
- Efficient at certain problems
- Usually “weak” (or agnostic) on data types

Examples of logic-programming in practice

- SQL (although not immediately obvious or designed this way)
- Datalog (more advanced version of SQL)
- Prolog (one of the first mainstraint LP languages)
- Answer Set Programming (we’ll dive into this a bit)
- Erlang (concurrent/parallel ... mixes logic and functional)
Where we are going ...

Exercise: Sketch out an algorithm that:

- takes a graph as input (with nodes and edges)
- assigns one of four colors to each node ("colors" the graph)
- however, no two adjacent nodes can have the same color

The "greedy" approach ...

- Assume colors are ordered (e.g., 0, 1, 2, 3) and nodes are ordered
- Iterate through each node
- Assign the next available color to the node
 - look at each of its adjacent node colors
 - pick the next available color

Using Answer-Set-Programming (in clingo)

% get the nodes
node(X) :- edge(X, _).
node(X) :- edge(_, X).

% guess a color for each node (better to use a choice rule)
color(X, r) | color(X, b) | color(X, g) | color(X, y) :- node(X).

% constrain adjacent colors
:- edge(X, Y), color(X, C), color(Y, C).

Note: This program can also find all possible colorings!
Exercise: Sketch an algorithm to solve https://xkcd.com/287/ for any menu and total price

One solution using Answer-Set-Programming (in clingo)

```clingo
#const total = 1505. % target total price
amount(0..7). % amount(0). amount(1). etc.

% the appetizer menu
item_price(fruit,215). item_price(fries,275).
item_price(salad,335). item_price(wings,355).
item_price(stick,420). item_price(plate,580).

% grab the items
item(F) :- item_price(F,_).

% guess an amount to order ("choice" rule)
1 {order(F,N) : amount(N)} 1 :- item(F).

% calculate the item totals
total_order(F,N,T) :- order(F,N), item_price(F,A), T = N*A.

% constrain to be 1505 total
:- total != #sum { T : total_order(F,N,T) }.

#show total_order/3. % only show the total_order relation
```
Consider the following propositional statements.

\[p \] \quad \text{... proposition } p \text{ is true}

\[q \leftarrow p \] \quad \text{... if } p \text{ is true, } q \text{ is true}

Q: What do we know to be true as a result of these statements?

- We know that \(p \) is true (given as a “fact”)
- We know that since \(p \) is true, \(q \) must also be true (inferred from the rule)

This result is called an “answer” of the “program”

- Refered to as an “answer set”: \(\{p, q\} \) \quad \text{... or a “stable model”}

Using clingo (an ASP system), we write:

\begin{align*}
p. \quad & \% p \text{ is a fact} \\
q \leftarrow p. \quad & \% \text{ same as } p \rightarrow q
\end{align*}

Which then gives us the answer set:

\begin{verbatim}
$ clingo prog.lp
Reading from prog.lp
Solving...
Answer: 1
p q
SATISFIABLE
\end{verbatim}

Models : 1
Calls : 1
Time : 0.020s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)
CPU Time : 0.000s
Basic terminology:

Given a rule

\[r \leftarrow p \land q \quad r :\!\!:\!\! : p, q. \]

- \(r \) is called the "\textbf{head}" of the rule
- \(p \land q \) is called the "\textbf{body}" of the rule ... read "\(p \) and \(q \) are both true"

Informally, Answer Sets ...

1. Satisfy all \underline{rules} of the program ...
 - if the answer includes the body it also includes the head
 - if the answer doesn’t include the body, the rule is trivially satisfied
2. Do not contain \underline{contradictions} (e.g., \(p \) and \(\neg p \))
3. Are \underline{minimal}
 - the \textit{Rationality Principle}: “Believe nothing you are not forced to believe"
 - always forced to believe asserted facts
 - each answer set is as small as it can be
Q: What is the “answer” (answer set) of the following?

<table>
<thead>
<tr>
<th>In propositional logic:</th>
<th>In LP syntax:</th>
</tr>
</thead>
<tbody>
<tr>
<td>$q \leftarrow p$</td>
<td>$q :\neg p.$</td>
</tr>
<tr>
<td>$r \leftarrow p$</td>
<td>$r :\neg p.$</td>
</tr>
<tr>
<td>$s \leftarrow q \land r$</td>
<td>$s :\neg q, r.$</td>
</tr>
<tr>
<td>p</td>
<td>$p.$</td>
</tr>
</tbody>
</table>

A: \{p, q, r, s\}

Q: What is the “answer” (answer set) of the following?

<table>
<thead>
<tr>
<th>In propositional logic:</th>
<th>In LP syntax:</th>
</tr>
</thead>
<tbody>
<tr>
<td>$q \leftarrow p$</td>
<td>$q :\neg p.$</td>
</tr>
<tr>
<td>$r \leftarrow q$</td>
<td>$r :\neg q.$</td>
</tr>
<tr>
<td>$t \leftarrow r \land s$</td>
<td>$t :\neg r, s.$</td>
</tr>
<tr>
<td>p</td>
<td>$p.$</td>
</tr>
<tr>
<td>t</td>
<td>$t.$</td>
</tr>
</tbody>
</table>

A: \{p, t, q, r\} ... note that s isn’t in the answer