Lecture 22:

e MyPL Virtual Machine

Announcements:
e Proj Part 1 due

e HW-4 out

CPSC 326 (Spring 2024) S. Bowers 1of3

“Virtual Machines” (VMs) for PL Interpretation

?wgvamlv\(wf

front % 6“",’ End
“Comp;\aﬁoﬂ Steps

\Vivtual

Wacwwne e | - - - \ < -

vm
(a progfav) instvoctions progmm

?vaoram Du*tpu’t

Implements an “abstract (computing) machine’

e similar to computer hardware (but in software) ...

e like a computer, consists of memory, instruction set, etc.

e instructions often similar to assembly (but often simpler and higher level)

e c.g., load, store, add, jump, etc.

A "bytecode’ VM

e encodes instructions in binary as a sequence of bytes (e.g., .class files)

e eg., ADD 3 4 might be encoded for the VM as 011000110100

"OpCOde" |I3ll ||4||
e keeps programs smaller and less effort to “parse” input programs

CPSC 326 (Spring 2024) S. Bowers

20of 3

MyPL VM for HW-5 and HW-6

e Based loosely on the JVM architecture (stack machine, stack frames)

e Via API calls instead of using bytecode encoding/decoding

e Takes some short cuts, tailored to MyPL

e Performs minimal error checking (except for runtime program errors)

(1) Data Types/Values

e Uses Python types to represent values and assumes programs are well typed

e Uses Python None value for representing MyPL null values

(2) Abstract Stack Machine

e instead of registers, uses an “operand stack”

PUSH 3 > lpusu Y |2

V. : V. : V.

ﬁnl'\'l D\
o

The VM components include:

operand stack (see above)

memory for storing local variables

ADD F
_A\ Vc
P d
. more later

. list of values/objects

e struct heap storage . oid — {field:value}
e array heap storage . oid — [value]
e function-call stack (stack of call “frames"”)

CPSC 326 (Spring 2024) S. Bowers 30of3

