
Lecture 22:

• MyPL Virtual Machine

Announcements:

• Proj Part 1 due

• HW-4 out

CPSC 326 (Spring 2024) S. Bowers 1 of 3



“Virtual Machines” (VMs) for PL Interpretation
 

ProgramInput
d

Compilation Steps

represent source
a program instructions Program

f
ng

code

Program output
Program

Implements an “abstract (computing) machine”

• similar to computer hardware (but in software) ...

• like a computer, consists of memory, instruction set, etc.

• instructions often similar to assembly (but often simpler and higher level)

• e.g., load, store, add, jump, etc.

A “bytecode” VM

• encodes instructions in binary as a sequence of bytes (e.g., .class files)

• e.g., ADD 3 4 might be encoded for the VM as 0 1 1 0︸ ︷︷ ︸
"opcode"

0 0 1 1︸ ︷︷ ︸
"3"

0 1 0 0︸ ︷︷ ︸
"4"

• keeps programs smaller and less effort to “parse” input programs

CPSC 326 (Spring 2024) S. Bowers 2 of 3



MyPL VM for HW-5 and HW-6

• Based loosely on the JVM architecture (stack machine, stack frames)

• Via API calls instead of using bytecode encoding/decoding

• Takes some short cuts, tailored to MyPL

• Performs minimal error checking (except for runtime program errors)

(1) Data Types/Values

• Uses Python types to represent values and assumes programs are well typed

• Uses Python None value for representing MyPL null values

(2) Abstract Stack Machine

• instead of registers, uses an “operand stack”

4
3 4 3 ADD 7

y It v

Initial
stack

The VM components include: ... more later

• operand stack (see above)

• memory for storing local variables ... list of values/objects

• struct heap storage ... oid → {field:value}

• array heap storage ... oid → [value]

• function-call stack (stack of call “frames”)

CPSC 326 (Spring 2024) S. Bowers 3 of 3


