
Lecture 19:

• Semantic Analysis (cont)

Announcements:

• HW-3 due Wed.

• HW-4 out

• Proj Part 1 due Mon after Spring Break

CPSC 326 (Spring 2024) S. Bowers 1 of 5

Scopes and Environments

MyPL uses static (i.e., lexical or block) scoping

• we associate to each block an environment (set of bindings)

• blocks (i.e., environments) can be nested

• bindings are found at a location by looking through all containing blocks

Note:

• a slight abuse of the notion of an “environment”

• where an “environment” is typically all of the containing blocks

For example: “sub environments” created through while and if statements:
outer environment +--------------------+
int x = 1; | x -> int |
while (x < 10) { | +----------------+ |
sub environment 1 | | | |
x = x * 2; | | | |

} | +----------------+ |
if (x == 10) { | +----------------+ |
sub environment 2 | | f -> double | |
double f = 3.14; | | | |

} | +----------------+ |
elseif (x > 10) { | +----------------+ |
sub environment 3 | | ... | |
... | +----------------+ |

} +--------------------+

To find the type bound to a given name ...

1. look at the names defined in the current environment first

2. then the parent environment

3. and so on

In our implementation, the symbol table maintains the environment information

• which is updated as you navigate the AST

CPSC 326 (Spring 2024) S. Bowers 2 of 5

Symbol Table

Stores variable state in a “stack” of environments as program is being checked

class SymbolTable:

initializes environment ``stack ''
def __init__(self):

number of environments (e.g., len(st)
def __len__(self):

print current environments (for debugging)
def __repr__(self):

add new environment (to stack)
def push_environment(self):

remove current environment (from stack)
def pop_environment(self):

add a binding (name -> info) to current environment
def add(self , name , info):

check if name is in the symbol table
def exists(self , name):

check if name is local (in current environment)
def exists_in_curr_env(self , name):

return info for name
def get(self , name):

CPSC 326 (Spring 2024) S. Bowers 3 of 5

New environments created/removed when we visit new “blocks”

self.symbol_table.push_environment ()
for stmt in stmts:

stmt.accept(self)
self.symbol_table.pop_environment ()

The plan:

• basic idea of the type checker implementation for HW-4

• kinds of semantic errors and typing rules for MyPL

• hints on type checker (visitor) implementation

CPSC 326 (Spring 2024) S. Bowers 4 of 5

Summary – Things to Know

1. Purpose of the Symbol Table in semantic checking

2. The basic data structures behind a Symbol Table

3. The basic operations of a Symbol Table and what they are used for

CPSC 326 (Spring 2024) S. Bowers 5 of 5

