
Lecture 18:

• Quiz 4

• Semantic Analysis (cont)

Announcements:

• HW-3 due Mon

CPSC 326 (Spring 2024) S. Bowers 1 of 4



The goal of static analysis is to:

• Detect errors due to type issues, e.g.:

x = 0 + "1"; // int + string not allowed
if (42 <= true) { // int <= bool not allowed
x = 1;

}

• Detect “use before def” errors, e.g.:

int x = 42 + y; // y not defined
if (x > 42) {
int y = x + 1;

}
else {
x = y; // y not defined in this block

}

• Detect function call errors, e.g.:

int add(int x, int y) {
return x + y;

}
void main() {
int r1 = add(1, 2, 3); // wrong number of args
int r2 = add(3.14, 1); // wrong argument types
bool r3 = add(1, 2); // wrong return type

}

• plus more ...

CPSC 326 (Spring 2024) S. Bowers 2 of 4



Examples of other kinds of errors found during static analysis

• duplicate function names

• duplicate struct names

• parameters with duplicate names and fields with duplicate names

• variable shadowing

• main function not defined

• and so on

Type errors often based on a set of typing rules (aka “judgements”)

• the rules define how types can be “inferred” (inference rules)

• statements or expressions that violate the rules have type errors

CPSC 326 (Spring 2024) S. Bowers 3 of 4



Basic Idea of Semantic Analysis (HW-4)

• navigate the AST using the Visitor pattern

• during navigation infer types and look for errors

Given this code ...

1: int x = 10;
2: int r = 0;
3: while (x > 0) {
4: r = r + x;
5: x = x - 1;
6: }

1. For “int x = 10;”

• check and infer rhs type, compare against declared type, store x’s type

2. Similarly for “int r = 0;”

3. For “while (x > 0) ... ”

• ensure x is defined and compatible with 0 (both ints)

• check each body statement ...

4. For “r = r + x;”

• ensure in rhs that r and x are defined and types are compatible for +

• ensure lhs is defined and result type (int) is compatible with lhs (r) type

5. etc.

Example suggests we need to keep track of names and their types!

• we’ll do this using a “symbol table”

• data structure for managing bindings (id -> type) in environments

CPSC 326 (Spring 2024) S. Bowers 4 of 4


